Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Feb 4;59(4):1969-1983.
doi: 10.1021/acs.est.4c10056. Epub 2024 Dec 23.

Extracellular Vesicles Are Prevalent and Effective Carriers of Environmental Allergens in Indoor Dust

Affiliations

Extracellular Vesicles Are Prevalent and Effective Carriers of Environmental Allergens in Indoor Dust

Lu Long et al. Environ Sci Technol. .

Abstract

The global incidence of allergic diseases is rising and poses a substantial threat to human health. Allergenic proteins released by various allergenic species play a critical role in the pathogenesis of allergic diseases and have been widely detected in the environmental matrix. However, the release, presence and interaction of environmental allergens with human body remain to be elucidated. In this study, we reported the widespread of allergen-harboring extracellular vesicles (EVs) in indoor dust from 75 households across five provinces in China. Particle size and abundance of EVs were correlated with specific environmental factors. EVs showed long persistence and high resistance to environmental stress. Metagenomics and metaproteomics data revealed that most indoor allergenic species released allergens within the EVs into dust. A higher abundance of allergenic species and their derived EVs was observed in urban areas compared to rural areas. ELISA confirmed the allergenic activity of the EV-associated allergens. Allergens are common components and even markers of EVs, as evidenced by the data compilation of various allergenic species. The proportion of EV-associated allergens varied across species. EVs facilitated allergen entry into epithelial cells. Intranasally administered EVs can be rapidly transported to the lungs and gastrointestinal tract. EV-associated allergens exhibited higher allergenicity compared with non-EV allergens. Our findings elucidate a vesicle pathway through which environmental allergens are released, persist, and trigger allergic responses within EVs.

Keywords: allergic diseases; environmental allergens; extracellular vesicles; indoor dust.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Prevalence of allergenic species-derived EVs in household dust. (A) TEM images of EVs in household dust. Dust EVs were extracted from rural (n = 5) and urban (n = 5) areas in five provinces including Fujian (FJ), Henan (HA), Sichuan (SC), Shaanxi (SN), and Shanxi (SX). The red arrow indicates the single-bilayer EVs, while the yellow arrow denotes the OIMVs. Scale bar = 50 nm. (B) Size distribution of EVs by NanoFCM. The band represents the standard deviation. (C) Correlations among bacteria, fungi, particle concentration of EVs and the ratio of EV particles to proteins. (D) Particle number of dust EVs stored at room temperature for 0, 10, 25, and 50 days (n = 3). Concentration of dust EV-associated proteins and supernatant proteins (non-EVs) after long-term storage at room temperature. All EVs were placed in EP tubes and stored under controlled laboratory conditions at 25 °C with relative humidity 40–60%. (E) Particle number of EVs from untreated, heated, and PK groups (n = 3). (F) PCoA plots of the Bray–Curtis distance of biological composition at the genus level. Each dot represents one sample. Colors were used to distinguish the rural and urban areas, and the symbol of circle and plus indicated the dust samples and its derived EVs samples, respectively. Ellipses represented the 95% confidence interval (95% CI). (G) Distribution of allergenic species in dust and their EV-associated DNA. The Venn diagram indicates the number of allergenic species, while the bar graph shows the relative abundance of allergenic species. (H) The number of predicted allergenic species in dust and EVs in rural and urban areas. (I) The relative abundance of allergenic species-associated DNA in dust and derived EVs in rural and urban areas. Each dot represents one allergenic species. “ns” P > 0.05, * P < 0.05, ** P < 0.01, *** P < 0.001.
Figure 2
Figure 2
Allergens from household dust EVs and the proportion of major allergens in typical allergenic species. (A) Statistical classification of dust EV-associated protein group sources at the kingdom and phylum level using Sankey plots. The heights of the rectangles indicate the relative abundance of taxonomic categories. (B) Relative abundance of dust EV-associated protein groups derived from allergenic species. (C) The number of predicted EV-associated allergens and other protein groups. The radial bar chart shows the subcellular location of the 95 predicted EV-associated allergens. (D) The relative abundance of predicted EV allergens and other protein groups in rural and urban dust EVs. Each dotted line represents one protein group. (E) The concentration of allergens (SEs, Art v 1 and Der f 1) in dust EVs by ELISA kits. (F) The relative abundance of EV-associated allergens in the three allergenic species. *** P < 0.001.
Figure 3
Figure 3
Data analysis of allergenic species-derived EV-associated allergens. (A) The number of predicted EV-associated allergens from different allergenic species with strong and weak evidence for allergenicity. (B) Subcellular localization and number of the 540 predicted EV-associated allergens. (C) Subcellular localization of the 28 types of EV protein markers predicted as allergens. Pie chart shows the proportion of different subcellular localizations.
Figure 4
Figure 4
Effects of allergenic species-derived EVs on human lung epithelial cells. The cells were exposed to different concentrations of EVs (0, 1, and 10 μg). (A) Confocal laser microscopic images of BEAS-2B cells after 6 h exposure to DiO-labeled EVs (green). The nuclei were labeled with DAPI (blue) and the cytoskeleton with rhodamine (red). Scale bar = 20 μm. ELISA was used to measure the levels of IL-6, IL-8, IL-1β, and TNF-α secreted by BEAS-2B cells following exposure to EVs derived fromS. aureus (B), A. annua pollen (C), and D. farinae (D) (n = 3). “ns” P > 0.05. * P < 0.05, ** P < 0.01, *** P < 0.001.
Figure 5
Figure 5
Tissue distribution and allergenic activity of A. annua pollen-derived EVs. (A) Representative IVIS image of intranasal administration of 1 × 1010 particles/gram body weight of DiR-EVs to a live mouse after 1 h and PBS-treated control (n = 3). (B) Following in vivo imaging of PBS or DiR-EVs mice, whole major organs (brain, heart, lungs, liver, spleen, kidneys, and tract) were excised and imaged ex vivo. Representative ex vivo images are shown. Organs are annotated on the left. (C) Quantitative analysis of ex vivo imaging data of organs from PBS-treated and EV-treated mice. Individual regions of interest (ROIs) were drawn for each organ to obtain the respective fluorescence signals. Fluorescence signal is expressed as total radiant efficiency [p/s]/[μW/cm2] per gram of tissue. (D) Protocol for modeling allergic airway inflammation in mice (n = 5). (E) The nasal symptom scores were different groups. (F) HE staining of paraffin-embedded lung and nasal mucosa sections. Black arrows indicated inflammatory cell infiltration, while yellow arrows indicated areas of congestion. (G, H) Serum levels of total IgE, allergen-specific IgE, IgG2a, and IgG1 were measured by ELISA. (I) Cytokines (IL-4, IL-5, and IL-13) in BALF were measured by ELISA. * P < 0.05, ** P < 0.01, *** P < 0.001.

Similar articles

References

    1. Pawankar R.; Canonica G. W.; Holgate S. T.; Lockey R. F.; Blaiss M. S., WAO White Bookon Allergy: Update 2013. 2013, (https://allergypaais.org/wao-book/.).
    1. Vos T.; Lim S. S.; Abbafati C.; Abbas K. M.; Abbasi M.; Abbasifard M.; Abbasi-Kangevari M.; Abbastabar H.; Abd-Allah F.; Abdelalim A.; Abdollahi M.; Abdollahpour I.; Abolhassani H.; Aboyans V.; Abrams E. M.; Abreu L. G.; Abrigo M. R. M.; Abu-Raddad L. J.; Abushouk A. I.; Acebedo A.; Ackerman I. N.; Adabi M.; Adamu A. A.; Adebayo O. M.; Adekanmbi V.; Adelson J. D.; Adetokunboh O. O.; Adham D.; Afshari M.; Afshin A.; Agardh E. E.; Agarwal G.; Agesa K. M.; Aghaali M.; Aghamir S. M. K.; Agrawal A.; Ahmad T.; Ahmadi A.; Ahmadi M.; Ahmadieh H.; Ahmadpour E.; Akalu T. Y.; Akinyemi R. O.; Akinyemiju T.; Akombi B.; Al-Aly Z.; Alam K.; Alam N.; Alam S.; Alam T.; Alanzi T. M.; Albertson S. B.; Alcalde-Rabanal J. E.; Alema N. M.; Ali M.; Ali S.; Alicandro G.; Alijanzadeh M.; Alinia C.; Alipour V.; Aljunid S. M.; Alla F.; Allebeck P.; Almasi-Hashiani A.; Alonso J.; Al-Raddadi R. M.; Altirkawi K. A.; Alvis-Guzman N.; Alvis-Zakzuk N. J.; Amini S.; Amini-Rarani M.; Aminorroaya A.; Amiri F.; Amit A. M. L.; Amugsi D. A.; Amul G. G. H.; Anderlini D.; Andrei C. L.; Andrei T.; Anjomshoa M.; Ansari F.; Ansari I.; Ansari-Moghaddam A.; Antonio C. A. T.; Antony C. M.; Antriyandarti E.; Anvari D.; Anwer R.; Arabloo J.; Arab-Zozani M.; Aravkin A. Y.; Ariani F.; Ärnlöv J.; Aryal K. K.; Arzani A.; Asadi-Aliabadi M.; Asadi-Pooya A. A.; Asghari B.; Ashbaugh C.; Atnafu D. D.; Atre S. R.; Ausloos F.; Ausloos M.; Ayala Quintanilla B. P.; Ayano G.; Ayanore M. A.; Aynalem Y. A.; Azari S.; Azarian G.; Azene Z. N.; Babaee E.; Badawi A.; Bagherzadeh M.; Bakhshaei M. H.; Bakhtiari A.; Balakrishnan S.; Balalla S.; Balassyano S.; Banach M.; Banik P. C.; Bannick M. S.; Bante A. B.; Baraki A. G.; Barboza M. A.; Barker-Collo S. L.; Barthelemy C. M.; Barua L.; Barzegar A.; Basu S.; Baune B. T.; Bayati M.; Bazmandegan G.; Bedi N.; Beghi E.; Béjot Y.; Bello A. K.; Bender R. G.; Bennett D. A.; Bennitt F. B.; Bensenor I. M.; Benziger C. P.; Berhe K.; Bernabe E.; Bertolacci G. J.; Bhageerathy R.; Bhala N.; Bhandari D.; Bhardwaj P.; Bhattacharyya K.; Bhutta Z. A.; Bibi S.; Biehl M. H.; Bikbov B.; Bin Sayeed M. S.; Biondi A.; Birihane B. M.; Bisanzio D.; Bisignano C.; Biswas R. K.; Bohlouli S.; Bohluli M.; Bolla S. R. R.; Boloor A.; Boon-Dooley A. S.; Borges G.; Borzì A. M.; Bourne R.; Brady O. J.; Brauer M.; Brayne C.; Breitborde N. J. K.; Brenner H.; Briant P. S.; Briggs A. M.; Briko N. I.; Britton G. B.; Bryazka D.; Buchbinder R.; Bumgarner B. R.; Busse R.; Butt Z. A.; Caetano dos Santos F. L.; Cámera L. L. A. A.; Campos-Nonato I. R.; Car J.; Cárdenas R.; Carreras G.; Carrero J. J.; Carvalho F.; Castaldelli-Maia J. M.; Castañeda-Orjuela C. A.; Castelpietra G.; Castle C. D.; Castro F.; Catalá-López F.; Causey K.; Cederroth C. R.; Cercy K. M.; Cerin E.; Chandan J. S.; Chang A. R.; Charlson F. J.; Chattu V. K.; Chaturvedi S.; Chimed-Ochir O.; Chin K. L.; Cho D. Y.; Christensen H.; Chu D.-T.; Chung M. T.; Cicuttini F. M.; Ciobanu L. G.; Cirillo M.; Collins E. L.; Compton K.; Conti S.; Cortesi P. A.; Costa V. M.; Cousin E.; Cowden R. G.; Cowie B. C.; Cromwell E. A.; Cross D. H.; Crowe C. S.; Cruz J. A.; Cunningham M.; Dahlawi S. M. A.; Damiani G.; Dandona L.; Dandona R.; Darwesh A. M.; Daryani A.; Das J. K.; Das Gupta R.; das Neves J.; Dávila-Cervantes C. A.; Davletov K.; De Leo D.; Dean F. E.; DeCleene N. K.; Deen A.; Degenhardt L.; Dellavalle R. P.; Demeke F. M.; Demsie D. G.; Denova-Gutiérrez E.; Dereje N. D.; Dervenis N.; Desai R.; Desalew A.; Dessie G. A.; Dharmaratne S. D.; Dhungana G. P.; Dianatinasab M.; Diaz D.; Dibaji Forooshani Z. S.; Dingels Z. V.; Dirac M. A.; Djalalinia S.; Do H. T.; Dokova K.; Dorostkar F.; Doshi C. P.; Doshmangir L.; Douiri A.; Doxey M. C.; Driscoll T. R.; Dunachie S. J.; Duncan B. B.; Duraes A. R.; Eagan A. W.; Ebrahimi Kalan M.; Edvardsson D.; Ehrlich J. R.; El Nahas N.; El Sayed I.; El Tantawi M.; Elbarazi I.; Elgendy I. Y.; Elhabashy H. R.; El-Jaafary S. I.; Elyazar I. R. F.; Emamian M. H.; Emmons-Bell S.; Erskine H. E.; Eshrati B.; Eskandarieh S.; Esmaeilnejad S.; Esmaeilzadeh F.; Esteghamati A.; Estep K.; Etemadi A.; Etisso A. E.; Farahmand M.; Faraj A.; Fareed M.; Faridnia R.; Farinha C. S. e. S.; Farioli A.; Faro A.; Faruque M.; Farzadfar F.; Fattahi N.; Fazlzadeh M.; Feigin V. L.; Feldman R.; Fereshtehnejad S.-M.; Fernandes E.; Ferrari A. J.; Ferreira M. L.; Filip I.; Fischer F.; Fisher J. L.; Fitzgerald R.; Flohr C.; Flor L. S.; Foigt N. A.; Folayan M. O.; Force L. M.; Fornari C.; Foroutan M.; Fox J. T.; Freitas M.; Fu W.; Fukumoto T.; Furtado J. M.; Gad M. M.; Gakidou E.; Galles N. C.; Gallus S.; Gamkrelidze A.; Garcia-Basteiro A. L.; Gardner W. M.; Geberemariyam B. S.; Gebrehiwot A. M.; Gebremedhin K. B.; Gebreslassie A. A. A. A.; Gershberg Hayoon A.; Gething P. W.; Ghadimi M.; Ghadiri K.; Ghafourifard M.; Ghajar A.; Ghamari F.; Ghashghaee A.; Ghiasvand H.; Ghith N.; Gholamian A.; Gilani S. A.; Gill P. S.; Gitimoghaddam M.; Giussani G.; Goli S.; Gomez R. S.; Gopalani S. V.; Gorini G.; Gorman T. M.; Gottlich H. C.; Goudarzi H.; Goulart A. C.; Goulart B. N. G.; Grada A.; Grivna M.; Grosso G.; Gubari M. I. M.; Gugnani H. C.; Guimaraes A. L. S.; Guimarães R. A.; Guled R. A.; Guo G.; Guo Y.; Gupta R.; Haagsma J. A.; Haddock B.; Hafezi-Nejad N.; Hafiz A.; Hagins H.; Haile L. M.; Hall B. J.; Halvaei I.; Hamadeh R. R.; Hamagharib Abdullah K.; Hamilton E. B.; Han C.; Han H.; Hankey G. J.; Haro J. M.; Harvey J. D.; Hasaballah A. I.; Hasanzadeh A.; Hashemian M.; Hassanipour S.; Hassankhani H.; Havmoeller R. J.; Hay R. J.; Hay S. I.; Hayat K.; Heidari B.; Heidari G.; Heidari-Soureshjani R.; Hendrie D.; Henrikson H. J.; Henry N. J.; Herteliu C.; Heydarpour F.; Hird T. R.; Hoek H. W.; Hole M. K.; Holla R.; Hoogar P.; Hosgood H. D.; Hosseinzadeh M.; Hostiuc M.; Hostiuc S.; Househ M.; Hoy D. G.; Hsairi M.; Hsieh V. C.-r.; Hu G.; Huda T. M.; Hugo F. N.; Huynh C. K.; Hwang B.-F.; Iannucci V. C.; Ibitoye S. E.; Ikuta K. S.; Ilesanmi O. S.; Ilic I. M.; Ilic M. D.; Inbaraj L. R.; Ippolito H.; Irvani S. S. N.; Islam M. M.; Islam M.; Islam S. M. S.; Islami F.; Iso H.; Ivers R. Q.; Iwu C. C. D.; Iyamu I. O.; Jaafari J.; Jacobsen K. H.; Jadidi-Niaragh F.; Jafari H.; Jafarinia M.; Jahagirdar D.; Jahani M. A.; Jahanmehr N.; Jakovljevic M.; Jalali A.; Jalilian F.; James S. L.; Janjani H.; Janodia M. D.; Jayatilleke A. U.; Jeemon P.; Jenabi E.; Jha R. P.; Jha V.; Ji J. S.; Jia P.; John O.; John-Akinola Y. O.; Johnson C. O.; Johnson S. C.; Jonas J. B.; Joo T.; Joshi A.; Jozwiak J. J.; Jürisson M.; Kabir A.; Kabir Z.; Kalani H.; Kalani R.; Kalankesh L. R.; Kalhor R.; Kamiab Z.; Kanchan T.; Karami Matin B.; Karch A.; Karim M. A.; Karimi S. E.; Kassa G. M.; Kassebaum N. J.; Katikireddi S. V.; Kawakami N.; Kayode G. A.; Keddie S. H.; Keller C.; Kereselidze M.; Khafaie M. A.; Khalid N.; Khan M.; Khatab K.; Khater M. M.; Khatib M. N.; Khayamzadeh M.; Khodayari M. T.; Khundkar R.; Kianipour N.; Kieling C.; Kim D.; Kim Y.-E.; Kim Y. J.; Kimokoti R. W.; Kisa A.; Kisa S.; Kissimova-Skarbek K.; Kivimäki M.; Kneib C. J.; Knudsen A. K. S.; Kocarnik J. M.; Kolola T.; Kopec J. A.; Kosen S.; Koul P. A.; Koyanagi A.; Kravchenko M. A.; Krishan K.; Krohn K. J.; Kuate Defo B.; Kucuk Bicer B.; Kumar G. A.; Kumar M.; Kumar P.; Kumar V.; Kumaresh G.; Kurmi O. P.; Kusuma D.; Kyu H. H.; La Vecchia C.; Lacey B.; Lal D. K.; Lalloo R.; Lam J. O.; Lami F. H.; Landires I.; Lang J. J.; Lansingh V. C.; Larson S. L.; Larsson A. O.; Lasrado S.; Lassi Z. S.; Lau K. M.-M.; Lavados P. M.; Lazarus J. V.; Ledesma J. R.; Lee P. H.; Lee S. W. H.; LeGrand K. E.; Leigh J.; Leonardi M.; Lescinsky H.; Leung J.; Levi M.; Lewington S.; Li S.; Lim L.-L.; Lin C.; Lin R.-T.; Linehan C.; Linn S.; Liu H.-C.; Liu S.; Liu Z.; Looker K. J.; Lopez A. D.; Lopukhov P. D.; Lorkowski S.; Lotufo P. A.; Lucas T. C. D.; Lugo A.; Lunevicius R.; Lyons R. A.; Ma J.; MacLachlan J. H.; Maddison E. R.; Maddison R.; Madotto F.; Mahasha P. W.; Mai H. T.; Majeed A.; Maled V.; Maleki S.; Malekzadeh R.; Malta D. C.; Mamun A. A.; Manafi A.; Manafi N.; Manguerra H.; Mansouri B.; Mansournia M. A.; Mantilla Herrera A. M.; Maravilla J. C.; Marks A.; Martins-Melo F. R.; Martopullo I.; Masoumi S. Z.; Massano J.; Massenburg B. B.; Mathur M. R.; Maulik P. K.; McAlinden C.; McGrath J. J.; McKee M.; Mehndiratta M. M.; Mehri F.; Mehta K. M.; Meitei W. B.; Memiah P. T. N.; Mendoza W.; Menezes R. G.; Mengesha E. W.; Mengesha M. B.; Mereke A.; Meretoja A.; Meretoja T. J.; Mestrovic T.; Miazgowski B.; Miazgowski T.; Michalek I. M.; Mihretie K. M.; Miller T. R.; Mills E. J.; Mirica A.; Mirrakhimov E. M.; Mirzaei H.; Mirzaei M.; Mirzaei-Alavijeh M.; Misganaw A. T.; Mithra P.; Moazen B.; Moghadaszadeh M.; Mohamadi E.; Mohammad D. K.; Mohammad Y.; Mohammad Gholi Mezerji N.; Mohammadian-Hafshejani A.; Mohammadifard N.; Mohammadpourhodki R.; Mohammed S.; Mokdad A. H.; Molokhia M.; Momen N. C.; Monasta L.; Mondello S.; Mooney M. D.; Moosazadeh M.; Moradi G.; Moradi M.; Moradi-Lakeh M.; Moradzadeh R.; Moraga P.; Morales L.; Morawska L.; Moreno Velásquez I.; Morgado-da-Costa J.; Morrison S. D.; Mosser J. F.; Mouodi S.; Mousavi S. M.; Mousavi Khaneghah A.; Mueller U. O.; Munro S. B.; Muriithi M. K.; Musa K. I.; Muthupandian S.; Naderi M.; Nagarajan A. J.; Nagel G.; Naghshtabrizi B.; Nair S.; Nandi A. K.; Nangia V.; Nansseu J. R.; Nayak V. C.; Nazari J.; Negoi I.; Negoi R. I.; Netsere H. B. N.; Ngunjiri J. W.; Nguyen C. T.; Nguyen J.; Nguyen M.; Nguyen M.; Nichols E.; Nigatu D.; Nigatu Y. T.; Nikbakhsh R.; Nixon M. R.; Nnaji C. A.; Nomura S.; Norrving B.; Noubiap J. J.; Nowak C.; Nunez-Samudio V.; Oţoiu A.; Oancea B.; Odell C. M.; Ogbo F. A.; Oh I.-H.; Okunga E. W.; Oladnabi M.; Olagunju A. T.; Olusanya B. O.; Olusanya J. O.; Oluwasanu M. M.; Omar Bali A.; Omer M. O.; Ong K. L.; Onwujekwe O. E.; Orji A. U.; Orpana H. M.; Ortiz A.; Ostroff S. M.; Otstavnov N.; Otstavnov S. S.; Øverland S.; Owolabi M. O.; P A M.; Padubidri J. R.; Pakhare A. P.; Palladino R.; Pana A.; Panda-Jonas S.; Pandey A.; Park E.-K.; Parmar P. G. K.; Pasupula D. K.; Patel S. K.; Paternina-Caicedo A. J.; Pathak A.; Pathak M.; Patten S. B.; Patton G. C.; Paudel D.; Pazoki Toroudi H.; Peden A. E.; Pennini A.; Pepito V. C. F.; Peprah E. K.; Pereira A.; Pereira D. M.; Perico N.; Pham H. Q.; Phillips M. R.; Pigott D. M.; Pilgrim T.; Pilz T. M.; Pirsaheb M.; Plana-Ripoll O.; Plass D.; Pokhrel K. N.; Polibin R. V.; Polinder S.; Polkinghorne K. R.; Postma M. J.; Pourjafar H.; Pourmalek F.; Pourmirza Kalhori R.; Pourshams A.; Poznańska A.; Prada S. I.; Prakash V.; Pribadi D. R. A.; Pupillo E.; Quazi Syed Z.; Rabiee M.; Rabiee N.; Radfar A.; Rafiee A.; Rafiei A.; Raggi A.; Rahimi-Movaghar A.; Rahman M. A.; Rajabpour-Sanati A.; Rajati F.; Ramezanzadeh K.; Ranabhat C. L.; Rao P. C.; Rao S. J.; Rasella D.; Rastogi P.; Rathi P.; Rawaf D. L.; Rawaf S.; Rawal L.; Razo C.; Redford S. B.; Reiner R. C.; Reinig N.; Reitsma M. B.; Remuzzi G.; Renjith V.; Renzaho A. M. N.; Resnikoff S.; Rezaei N.; Rezai M.; Rezapour A.; Rhinehart P.-A.; Riahi S. M.; Ribeiro A. L. P.; Ribeiro D. C.; Ribeiro D.; Rickard J.; Roberts N. L. S.; Roberts S.; Robinson S. R.; Roever L.; Rolfe S.; Ronfani L.; Roshandel G.; Roth G. A.; Rubagotti E.; Rumisha S. F.; Sabour S.; Sachdev P. S.; Saddik B.; Sadeghi E.; Sadeghi M.; Saeidi S.; Safi S.; Safiri S.; Sagar R.; Sahebkar A.; Sahraian M. A.; Sajadi S. M.; Salahshoor M. R.; Salamati P.; Salehi Zahabi S.; Salem H.; Salem M. R. R.; Salimzadeh H.; Salomon J. A.; Salz I.; Samad Z.; Samy A. M.; Sanabria J.; Santomauro D. F.; Santos I. S.; Santos J. V.; Santric-Milicevic M. M.; Saraswathy S. Y. I.; Sarmiento-Suárez R.; Sarrafzadegan N.; Sartorius B.; Sarveazad A.; Sathian B.; Sathish T.; Sattin D.; Sbarra A. N.; Schaeffer L. E.; Schiavolin S.; Schmidt M. I.; Schutte A. E.; Schwebel D. C.; Schwendicke F.; Senbeta A. M.; Senthilkumaran S.; Sepanlou S. G.; Shackelford K. A.; Shadid J.; Shahabi S.; Shaheen A. A.; Shaikh M. A.; Shalash A. S.; Shams-Beyranvand M.; Shamsizadeh M.; Shannawaz M.; Sharafi K.; Sharara F.; Sheena B. S.; Sheikhtaheri A.; Shetty R. S.; Shibuya K.; Shiferaw W. S.; Shigematsu M.; Shin J. I.; Shiri R.; Shirkoohi R.; Shrime M. G.; Shuval K.; Siabani S.; Sigfusdottir I. D.; Sigurvinsdottir R.; Silva J. P.; Simpson K. E.; Singh A.; Singh J. A.; Skiadaresi E.; Skou S. T.; Skryabin V. Y.; Sobngwi E.; Sokhan A.; Soltani S.; Sorensen R. J. D.; Soriano J. B.; Sorrie M. B.; Soyiri I. N.; Sreeramareddy C. T.; Stanaway J. D.; Stark B. A.; Ştefan S. C.; Stein C.; Steiner C.; Steiner T. J.; Stokes M. A.; Stovner L. J.; Stubbs J. L.; Sudaryanto A.; Sufiyan M. a. B.; Sulo G.; Sultan I.; Sykes B. L.; Sylte D. O.; Szócska M.; Tabarés-Seisdedos R.; Tabb K. M.; Tadakamadla S. K.; Taherkhani A.; Tajdini M.; Takahashi K.; Taveira N.; Teagle W. L.; Teame H.; Tehrani-Banihashemi A.; Teklehaimanot B. F.; Terrason S.; Tessema Z. T.; Thankappan K. R.; Thomson A. M.; Tohidinik H. R.; Tonelli M.; Topor-Madry R.; Torre A. E.; Touvier M.; Tovani-Palone M. R. R.; Tran B. X.; Travillian R.; Troeger C. E.; Truelsen T. C.; Tsai A. C.; Tsatsakis A.; Tudor Car L.; Tyrovolas S.; Uddin R.; Ullah S.; Undurraga E. A.; Unnikrishnan B.; Vacante M.; Vakilian A.; Valdez P. R.; Varughese S.; Vasankari T. J.; Vasseghian Y.; Venketasubramanian N.; Violante F. S.; Vlassov V.; Vollset S. E.; Vongpradith A.; Vukovic A.; Vukovic R.; Waheed Y.; Walters M. K.; Wang J.; Wang Y.; Wang Y.-P.; Ward J. L.; Watson A.; Wei J.; Weintraub R. G.; Weiss D. J.; Weiss J.; Westerman R.; Whisnant J. L.; Whiteford H. A.; Wiangkham T.; Wiens K. E.; Wijeratne T.; Wilner L. B.; Wilson S.; Wojtyniak B.; Wolfe C. D. A.; Wool E. E.; Wu A.-M.; Wulf Hanson S.; Wunrow H. Y.; Xu G.; Xu R.; Yadgir S.; Yahyazadeh Jabbari S. H.; Yamagishi K.; Yaminfirooz M.; Yano Y.; Yaya S.; Yazdi-Feyzabadi V.; Yearwood J. A.; Yeheyis T. Y.; Yeshitila Y. G.; Yip P.; Yonemoto N.; Yoon S.-J.; Yoosefi Lebni J.; Younis M. Z.; Younker T. P.; Yousefi Z.; Yousefifard M.; Yousefinezhadi T.; Yousuf A. Y.; Yu C.; Yusefzadeh H.; Zahirian Moghadam T.; Zaki L.; Zaman S. B.; Zamani M.; Zamanian M.; Zandian H.; Zangeneh A.; Zastrozhin M. S.; Zewdie K. A.; Zhang Y.; Zhang Z.-J.; Zhao J. T.; Zhao Y.; Zheng P.; Zhou M.; Ziapour A.; Zimsen S. R. M.; Naghavi M.; Murray C. J. L. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396 (10258), 1204–1222. 10.1016/S0140-6736(20)30925-9. - DOI - PMC - PubMed
    1. Galli S. J.; Tsai M.; Piliponsky A. M. The development of allergic inflammation. Nature 2008, 454 (7203), 445–454. 10.1038/nature07204. - DOI - PMC - PubMed
    1. Reinmuth-Selzle K.; Kampf C. J.; Lucas K.; Lang-Yona N.; Fröhlich-Nowoisky J.; Shiraiwa M.; Lakey P. S. J.; Lai S. C.; Liu F. B.; Kunert A. T.; Ziegler K.; Shen F. X.; Sgarbanti R.; Weber B.; Bellinghausen I.; Saloga J.; Weller M. G.; Duschl A.; Schuppan D.; Pöschl U. Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. Environ. Sci. Technol. 2017, 51 (8), 4119–4141. 10.1021/acs.est.6b04908. - DOI - PMC - PubMed
    1. Breiteneder H.; Diamant Z.; Eiwegger T.; Fokkens W. J.; Traidl-Hoffmann C.; Nadeau K.; O’Hehir R. E.; O’Mahony L.; Pfaar O.; Torres M. J.; Wang Y.; Zhang L.; Akdis C. A. Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy 2019, 74 (12), 2293–2311. 10.1111/all.13851. - DOI - PMC - PubMed

LinkOut - more resources