Predicting an EEG-Based hypnotic time estimation with non-linear kernels of support vector machine algorithm
- PMID: 39712110
- PMCID: PMC11655758
- DOI: 10.1007/s11571-024-10088-y
Predicting an EEG-Based hypnotic time estimation with non-linear kernels of support vector machine algorithm
Abstract
Our ability to measure time is vital for daily life, technology use, and even mental health; however, separating pure time perception from other mental processes (like emotions) is a research challenge requiring precise tests to isolate and understand brain activity solely related to time estimation. To address this challenge, we designed an experiment utilizing hypnosis alongside electroencephalography (EEG) to assess differences in time estimation, namely underestimation and overestimation. Hypnotic induction is designed to reduce awareness and meta-awareness, facilitating a detachment from the immediate environment. This reduced information processing load minimizes the need for elaborate internal thought during hypnosis, further simplifying the cognitive landscape. To predict time perception based on brain activity during extended durations (5 min), we employed artificial intelligence techniques. Utilizing Support Vector Machines (SVMs) with both radial basis function (RBF) and polynomial kernels, we assessed their effectiveness in classifying time perception-related brain patterns. We evaluated various feature combinations and different algorithms to identify the most accurate configuration. Our analysis revealed an impressive 80.9% classification accuracy for time perception detection using the RBF kernel, demonstrating the potential of AI in decoding this complex cognitive function.
Keywords: EEG; Hypnosis; Polynomial; Radial basis function; Time estimation.
© The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Conflict of interest statement
Conflict of interestThe authors declare that they have no conflict of interest.
Similar articles
-
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.Clin Orthop Relat Res. 2024 Dec 1;482(12):2193-2208. doi: 10.1097/CORR.0000000000003185. Epub 2024 Jul 23. Clin Orthop Relat Res. 2024. PMID: 39051924
-
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.
-
A New Measure of Quantified Social Health Is Associated With Levels of Discomfort, Capability, and Mental and General Health Among Patients Seeking Musculoskeletal Specialty Care.Clin Orthop Relat Res. 2025 Apr 1;483(4):647-663. doi: 10.1097/CORR.0000000000003394. Epub 2025 Feb 5. Clin Orthop Relat Res. 2025. PMID: 39915110
-
Artificial intelligence for detecting keratoconus.Cochrane Database Syst Rev. 2023 Nov 15;11(11):CD014911. doi: 10.1002/14651858.CD014911.pub2. Cochrane Database Syst Rev. 2023. PMID: 37965960 Free PMC article.
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4. Cochrane Database Syst Rev. 2021. Update in: Cochrane Database Syst Rev. 2022 May 23;5:CD011535. doi: 10.1002/14651858.CD011535.pub5. PMID: 33871055 Free PMC article. Updated.
References
-
- Abbasi SF, Ahmad J, Tahir A, Awais M, Chen C, Irfan M, Siddiqa HA, Waqas AB, Long X, Yin B (2020) EEG-based neonatal sleep-wake classification using multilayer perceptron neural network. IEEE Access 8:183025–183034
-
- Albayrak M (2009) The detection of an epileptiform activity on EEG signals by using data mining process. Technol Appl Sci 4(1):1–12
-
- Alotaiby T, Abd El-Samie FE, Alshebeili SA, Ahmad I (2015) A review of channel selection algorithms for EEG signal processing. EURASIP J Adv Signal Process 2015(1):1–21
LinkOut - more resources
Full Text Sources