Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024;74(3-4):251-266.
doi: 10.1007/s42489-024-00181-x. Epub 2024 Dec 3.

Improved Navigation Performance Through Memory Triggering Maps: A Neurocartographic Approach

Affiliations
Review

Improved Navigation Performance Through Memory Triggering Maps: A Neurocartographic Approach

Frank Dickmann et al. KN J Cartogr Geogr Inf. 2024.

Abstract

When using navigation devices the "cognitive map" created in the user's mind is much more fragmented, incomplete and inaccurate, compared to the mental model of space created when reading a conventional printed map. As users become more dependent on digital devices that reduce orientation skills, there is an urgent need to develop more efficient navigation systems that promote orientation skills. This paper proposes to consider brain processes for creating more efficient maps that use a network of optimally located cardinal lines and landmarks organized to support and stabilize the neurocognitive structures in the brain that promote spatial orientation. This new approach combines neurocognitive insights with classical research on the efficiency of cartographic visualizations. Recent neuroscientific findings show that spatially tuned neurons could be linked to navigation processes. In particular, the activity of grid cells, which appear to be used to process metric information about space, can be influenced by environmental stimuli such as walls or boundaries. Grid cell activity could be used to create a new framework for map-based interfaces that primarily considers the brain structures associated with the encoding and retrieval of spatial information. The new framework proposed in this paper suggests to arrange map symbols in a specific way that the map design helps to stabilize grid cell firing in the brain and by this improve spatial orientation and navigational performance. Spatially oriented cells are active in humans not only when moving in space, but also when imagining moving through an area-such as when reading a map. It seems likely that the activity of grid cells can be stabilized simply by map symbols that are perceived when reading a map.

Die "kognitive Karte", die im Kopf des Nutzers bei der Verwendung von Navigationsgeräten entsteht, ist viel fragmentierter, unvollständiger und ungenauer als das mentale Modell des Raums, das beim Lesen einer herkömmlichen gedruckten Karte entsteht. Angesichts der zunehmenden Abhängigkeit der Nutzer von digitalen Endgeräten, die die Orientierungsfähigkeit einschränken, besteht ein dringender Bedarf an der Entwicklung effizienterer Navigationssysteme, die die „kognitive Karte “ stärken und die Orientierungsfähigkeit fördern. Mit diesem Beitrag wird vorgeschlagen, Gehirnprozesse zu berücksichtigen, um effizientere Karten zu erstellen. Dazu könnte ein Netzwerk optimal platzierter Kardinallinien und Landmarken genutzt werden, das so organisiert ist, dass es die neurokognitiven Strukturen im Gehirn unterstützt und stabilisiert, die die räumliche Orientierung fördern. Dieser neue Ansatz verbindet neurokognitive Erkenntnisse mit der klassischen Forschung über die Effizienz kartografischer Visualisierungen. Neuere neurowissenschaftliche Erkenntnisse zeigen, dass räumlich orientierte Gehirnzellen mit Navigationsprozessen in Verbindung stehen. Insbesondere die Aktivität von Gitterzellen (grid cells), die metrische Informationen über den Raum verarbeiten, kann durch (externe) Umweltreize wie Wände oder Grenzen beeinflusst werden. Räumlich orientierte Zellen sind bei Menschen nicht nur aktiv, wenn sie sich im Raum bewegt, sondern auch, wenn er sich vorstellt, sich durch ein Gebiet zu bewegen – wie etwa beim Lesen einer Karte. Es scheint wahrscheinlich, dass die Aktivität der Gitterzellen im Gehirn allein durch kartographische Signaturen, die beim Lesen einer Karte wahrgenommen werden, stabilisiert werden kann.

Keywords: Cognitive maps; Grid cells; Navigation performance; Neurocartography; Spatial memory.

PubMed Disclaimer

Conflict of interest statement

Conflict of InterestThere is no conflict of interest.

Figures

Fig. 1
Fig. 1
In a topographic map, grid geometry (black lines) apparently influences eye movements of a participant (fixations represented as green, yellow and red dots as the number increases) that focus on an object (red circle) during an object location encoding (Dickmann et al. 2015)
Fig. 2
Fig. 2
a Geometric pattern of grid cell firing fields (here: grid cell example of a rat); red dots mark the firing positions of a grid cell of a rat moving around in a box; the rat tracks shown in black (since the rat ran through almost the entire area (cage) during the electrophysiological measurement with revisited locations where grid cells fire, the area appears almost completely black); grid cell firing fields exhibiting a characteristic sixfold rotational symmetry (Bonnevie et al. ; with permission, license number 5730791287020); grid cell properties: spacing, phase ( x0,y0), and orientation (α) (according to Derdikman and Moser 2014) (Bonnevie et al. ; Moser et al. 2014); b assumed sketch of grid cell firing fields (activated in the brain) when moving through a grassy environment
Fig. 3
Fig. 3
Potential advantages of six-fold over four-fold grid cell firing fields. The hexagonal pattern enables a higher directional resolution as six directions (3 axes) are available instead of only four (2 axes). With the hexagonal arrangement, a higher, more efficient packing density (few gaps) can be achieved to cover the surrounding area
Fig. 4
Fig. 4
Assumed influence of cartographic cues on grid cell activity and the formation of a spatial mental representation (simplified according to Winter and Taube ; extended)
Fig. 5
Fig. 5
Conceptual approach to trigger memory performance: using map elements such as represented cardinal axes to stabilize grid cell firing in the brain (cell firing image, Bonnevie et al. ; map data © OpenStreetMap contributors, licensed under the Open Database License (ODbL). Retrieved from www.openstreetmap.org)
Fig. 6
Fig. 6
Visualizing a cardinal axis of the environment as a superordinated reference presumably maintains the alignment of grid cell firing fields (cf. Navarro Schroeder et al. ; Hafting et al. 2005), thus stabilizing the grid cell firing fields and supporting navigation (building spatial mental representation; map data © OpenStreetMap contributors, licensed under the Open Database License (ODbL). Retrieved from www.openstreetmap.org)
Fig. 7
Fig. 7
Moving along a hexagonal axis in a 3D environment (or even imagined moving) when observing navigation system displays or reading maps possibly supports spatial memory performance; object locations on a map (white circles) aligned to hexadirectional axes and nodes of grid cell firing fields (here represented by red bands and spheres) are probably better learned. (Map data © OpenStreetMap contributors, licensed under the Open Database License (ODbL). Retrieved from www.openstreetmap.org)

References

    1. Ahmadpoor N, Smith AD, Heath T (2020) Rethinking legibility in the era of digital mobile maps: an empirical study. J Urban Des. 10.1080/13574809.2020.1777847
    1. Aly ML, Masi M, Montanaro M, Ricciardelli P (2024) The effect of negative emotion processing on spatial navigation: an experimental study using virtual reality. Front Psychol 14:1301981. 10.3389/fpsyg.2023.1301981 - PMC - PubMed
    1. Anacta VJA, Schwering A, Li R, Muenzer S (2017) Orientation information in wayfinding instructions: evidences from human verbal and visual instructions. GeoJournal 82:567–583. 10.1007/s10708-016-9703-5
    1. Barry C, Ginzberg LL, O’Keefe J, Burgess N (2012) Grid cell firing patterns signal environmental novelty by expansion. Proc Natl Acad Sci USA 109(43):17687–17692. 10.1073/pnas.1209918109 - PMC - PubMed
    1. Bellmund JLS, Deuker L, Navarro Schröder T, Doeller CF (2016) Grid-cell representations in mental simulation. Elife 5:e17089. 10.7554/eLife.17089 - PMC - PubMed

LinkOut - more resources