Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Feb:370:144012.
doi: 10.1016/j.chemosphere.2024.144012. Epub 2024 Dec 28.

A sensitive and selective amperometric determination of perfluorooctanesulfonic acid on Mo2Ti2AlC3 MXene precursor-modified electrode

Affiliations

A sensitive and selective amperometric determination of perfluorooctanesulfonic acid on Mo2Ti2AlC3 MXene precursor-modified electrode

Samaneh Rashtbari et al. Chemosphere. 2025 Feb.

Abstract

Various commercial and industrial products widely use highly toxic eight-carbon-chain perfluorooctanesulfonate (PFOS), posing a significant threat to the health of living organisms. In this study, the electrochemical detection of PFOS was achieved by developing a carbon paste electrode (CPE) using the Mo2Ti2AlC3 MAX phase. Mo2Ti2AlC3 was synthesized and directly used to construct the CPE. The electrochemical performance of the prepared sensor was tested using various electrochemical techniques, such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and amperometric titration. The developed electrochemical sensor exhibited two linear ranges from 0.001 to 0.09 μM and from 1.1 to 62.6 μM, with a detection limit of 0.04 nM. The sensor demonstrated high sensitivity, measuring 145.1 μA μM-1 cm-2, and a response time of 5 s for PFOS quantification at a working potential of 0.3 V. Additionally, the sensor demonstrated outstanding resistance to typical interfering chemicals. The applicability and reliability of the developed sensor for PFOS determination were further tested in real samples, yielding recoveries in the range of 92.6-108.2%, with relative standard deviation (RSD) values between 1.8% and 3.7%. The Mo2Ti2AlC3 MAX phase-based electrochemical sensor is simple, rapid, sensitive, and cost-effective, making it a promising approach for the quantification of PFOS in environmental water and soil samples.

Keywords: Electrochemical sensor; MAX phase material; Per-/poly-fluoroalkyl substances; Perfluorooctanesulfonate detection; Wastewater treatment.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources