Simple and Rapid HPLC-ICP-MS Method for the Simultaneous Determination of Cr(III) and Cr(VI) by Combining a 2,6-Pyridinedicarboxylic Acid Pre-Complexation Treatment
- PMID: 39717498
- PMCID: PMC11664310
- DOI: 10.5702/massspectrometry.A0161
Simple and Rapid HPLC-ICP-MS Method for the Simultaneous Determination of Cr(III) and Cr(VI) by Combining a 2,6-Pyridinedicarboxylic Acid Pre-Complexation Treatment
Abstract
A simple and rapid analytical method was developed for the simultaneous determination of two chromium species, Cr(III) and Cr(VI), in the environmental waters by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). This study incorporated a chelating pretreatment with 2,6-pyridinedicarboxylic acid (PDCA) to convert Cr(III) species into a stable Cr(III)-PDCA anion complex, which was then separated from Cr(VI) oxyanion using an anion exchange column. Building on the fundamental analytical approach proposed by Shigeta et al. (doi: 10.2116/analsci.18P012), the mobile phase was optimized to ensure stability for ICP-MS detection, avoiding nonvolatile salts. Chromium species and chloride ions were effectively separated within 6 minutes at a flow rate of 0.6 mL min-1 with the optimized mobile phase, which consisted of 50 mmol L-1 ammonium acetate (pH 6.80) and 2 mmol L-1 PDCA. The detection limits were 0.18 μg L-1 and 0.09 μg L-1 for Cr(III) and Cr(VI), respectively, at m/z 52 under He collision mode.
Keywords: HPLC-ICP-MS; PDCA; chromium; speciation; volatile salt mobile phase.
Copyright ©2024 Akane Ito, Kazuto Isamoto, Yuhei Morishita, and Masaharu Tanimizu.
Figures




Similar articles
-
Rapid determination of chromium species in environmental waters using a diol-bonded polymer-stationary column under water-rich conditions coupled with ICPMS.Anal Sci. 2024 Mar;40(3):359-366. doi: 10.1007/s44211-023-00475-6. Epub 2024 Jan 16. Anal Sci. 2024. PMID: 38228992
-
A Robust Method for the Determination of Cr(VI) and Cr(III) in Industrial Wastewaters by Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry Combined with a Chelating Pretreatment with 2,6-Pyridinedicarboxylic Acid.Anal Sci. 2018;34(8):925-932. doi: 10.2116/analsci.18P012. Anal Sci. 2018. PMID: 30101887
-
Development and validation of a single run method based on species specific isotope dilution and HPLC-ICP-MS for simultaneous species interconversion correction and speciation analysis of Cr(III)/Cr(VI) in meat and dairy products.Talanta. 2021 Jan 15;222:121538. doi: 10.1016/j.talanta.2020.121538. Epub 2020 Aug 15. Talanta. 2021. PMID: 33167246
-
Chromium speciation by anion-exchange high-performance liquid chromatography with both inductively coupled plasma atomic emission spectroscopic and inductively coupled plasma mass spectrometric detection.J Chromatogr A. 1995 Oct 13;712(2):311-20. doi: 10.1016/0021-9673(95)00528-u. J Chromatogr A. 1995. PMID: 7581851
-
Chromium and its speciation in water samples by HPLC/ICP-MS--technique establishing metrological traceability: a review since 2000.Talanta. 2015 Jan;132:814-28. doi: 10.1016/j.talanta.2014.10.002. Epub 2014 Oct 14. Talanta. 2015. PMID: 25476383 Review.
References
-
- K. H. Vardhan, P. S. Kumar, R. C. Panda. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 290: 111197, 2019.
-
- International Agency for Research on Cancer (IARC). Arsenic, metals, fibres, and dusts. IARC monographs on the evaluation of carcinogenic risks to humans, vol. 100C: A review of human carcinogens, 2012, pp. 501. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-T.... - PMC - PubMed
-
- J. Farkaš, V. Chrastný, M. Novák, E. Čadkova, J. Pašava, R. Chakrabarti, S. B. Jacobsen, L. Ackerman, T. D. Bullen. Chromium isotope variations (δ53/52Cr) in mantle-derived sources and their weathering products: Implications for environmental studies and the evolution of δ53/52Cr in the Earth’s mantle over geologic time. Geochim. Cosmochim. Acta 123: 74–92, 2013.
-
- M. Novák, V. Chrastný, E. Čadkova, J. Farkaš, T. D. Bullen, J. Tylcer, Z. Szurmanova, M. Cron, E. Prechova, J. Curik, M. Stepanova, J. Pašava, L. Erbanova, M. Houskova, K. Puncochar, L. A. Hellerich. Common occurrence of a positive δ53Cr shift in Central European waters contaminated by geogenic/industrial chromium relative to source values. Environ. Sci. Technol. 48: 6089–6096, 2014. - PubMed
-
- C. N. McClain, K. Maher. Chromium fluxes and speciation in ultramafic catchments and global rivers. Chem. Geol. 426: 135–157, 2016.
LinkOut - more resources
Full Text Sources
Miscellaneous