Viral-host molecular interactions and metabolic modulation: Strategies to inhibit flaviviruses pathogenesis
- PMID: 39722758
- PMCID: PMC11551686
- DOI: 10.5501/wjv.v13.i4.99110
Viral-host molecular interactions and metabolic modulation: Strategies to inhibit flaviviruses pathogenesis
Abstract
Flaviviruses, which include globally impactful pathogens, such as West Nile virus, yellow fever virus, Zika virus, Japanese encephalitis virus, and dengue virus, contribute significantly to human infections. Despite the ongoing emergence and resurgence of flavivirus-mediated pathogenesis, the absence of specific therapeutic options remains a challenge in the prevention and treatment of flaviviral infections. Through the intricate processes of fusion, transcription, replication, and maturation, the complex interplay of viral and host metabolic interactions affects pathophysiology. Crucial interactions involve metabolic molecules, such as amino acids, glucose, fatty acids, and nucleotides, each playing a pivotal role in the replication and maturation of flaviviruses. These viral-host metabolic molecular interactions hijack and modulate the molecular mechanisms of host metabolism. A comprehensive understanding of these intricate metabolic pathways offers valuable insights, potentially unveiling novel targets for therapeutic interventions against flaviviral pathogenesis. This review emphasizes promising avenues for the development of therapeutic agents that target specific metabolic molecules, such as amino acids, glucose, fatty acids, and nucleotides, which interact with flavivirus replication and are closely linked to the modulation of host metabolism. The clinical limitations of current drugs have prompted the development of new inhibitory strategies for flaviviruses based on an understanding of the molecular interactions between the virus and the host.
Keywords: Flavivirus; Inhibitors; Metabolism; Nonstructural proteins; Vaccines; Virus-host interaction.
©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
Conflict of interest statement
Conflict-of-interest statement: The authors declare no conflict of interest.
Figures
References
-
- Postler TS, Beer M, Blitvich BJ, Bukh J, de Lamballerie X, Drexler JF, Imrie A, Kapoor A, Karganova GG, Lemey P, Lohmann V, Simmonds P, Smith DB, Stapleton JT, Kuhn JH. Renaming of the genus Flavivirus to Orthoflavivirus and extension of binomial species names within the family Flaviviridae. Arch Virol. 2023;168:224. - PubMed
-
- Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol. 2005;3:13–22. - PubMed
-
- Messina JP, Brady OJ, Golding N, Kraemer MUG, Wint GRW, Ray SE, Pigott DM, Shearer FM, Johnson K, Earl L, Marczak LB, Shirude S, Davis Weaver N, Gilbert M, Velayudhan R, Jones P, Jaenisch T, Scott TW, Reiner RC Jr, Hay SI. The current and future global distribution and population at risk of dengue. Nat Microbiol. 2019;4:1508–1515. - PMC - PubMed
Publication types
LinkOut - more resources
Full Text Sources
