Platelet Membrane-Coated HGF-PLGA Nanoparticles Promote Therapeutic Angiogenesis and Tissue Perfusion Recovery in Ischemic Hindlimbs
- PMID: 39723905
- PMCID: PMC11753260
- DOI: 10.1021/acsabm.4c01373
Platelet Membrane-Coated HGF-PLGA Nanoparticles Promote Therapeutic Angiogenesis and Tissue Perfusion Recovery in Ischemic Hindlimbs
Abstract
Therapeutic angiogenesis has garnered significant attention as a potential treatment strategy for lower limb ischemic diseases. Although hepatocyte growth factor (HGF) has been identified as a key promoter of therapeutic angiogenesis, its clinical application is limited due to its short half-life. In this study, we successfully developed and characterized platelet membrane-coated HGF-poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). These nanoparticles demonstrated enhanced capabilities to promote endothelial cell (EC) proliferation, migration, and tube formation in vitro. Additionally, their efficacy in improving tissue perfusion and promoting angiogenesis was confirmed in a hindlimb ischemia rat model. Our findings suggest that platelet membrane-coated HGF-PLGA-NPs could serve as a promising therapeutic approach for enhancing angiogenesis and restoring tissue perfusion in ischemic conditions.
Keywords: chronic limb-threatening ischemia; drug delivery; hepatocyte growth factor; peripheral artery disease; therapeutic angiogenesis.
Conflict of interest statement
The authors declare no competing financial interest.
Similar articles
-
Optimal injection sites for therapeutic angiogenesis: HGF-mediated regulation of HIF-1α via MAPK/PI3K pathways in hypoxic endothelial cells.Tissue Cell. 2025 Aug;95:102871. doi: 10.1016/j.tice.2025.102871. Epub 2025 Mar 20. Tissue Cell. 2025. PMID: 40132390
-
Therapeutic angiogenesis by local sustained release of microRNA-126 using poly lactic-co-glycolic acid nanoparticles in murine hindlimb ischemia.J Vasc Surg. 2018 Oct;68(4):1209-1215. doi: 10.1016/j.jvs.2017.08.097. Epub 2017 Dec 11. J Vasc Surg. 2018. PMID: 29242072
-
Sustained delivery of sphingosine-1-phosphate using poly(lactic-co-glycolic acid)-based microparticles stimulates Akt/ERK-eNOS mediated angiogenesis and vascular maturation restoring blood flow in ischemic limbs of mice.Eur J Pharmacol. 2010 May 25;634(1-3):121-31. doi: 10.1016/j.ejphar.2010.02.038. Epub 2010 Mar 3. Eur J Pharmacol. 2010. PMID: 20206620
-
ML228-loaded nanoparticles with platelet membrane coating promote endothelialization of vascular grafts by enhancing HIF-1α expression.Colloids Surf B Biointerfaces. 2025 Sep;253:114756. doi: 10.1016/j.colsurfb.2025.114756. Epub 2025 May 2. Colloids Surf B Biointerfaces. 2025. PMID: 40334473
-
Folate-Mediated Targeting and Controlled Release: PLGA-Encapsulated Mesoporous Silica Nanoparticles Delivering Capecitabine to Pancreatic Tumor.ACS Appl Bio Mater. 2024 Dec 16;7(12):7838-7851. doi: 10.1021/acsabm.4c00019. Epub 2024 Mar 26. ACS Appl Bio Mater. 2024. PMID: 38530292 Review.
Cited by
-
Glycometabolic Regulation of Angiogenesis: Mechanisms and Therapeutic Strategies.Int J Mol Sci. 2025 Mar 7;26(6):2386. doi: 10.3390/ijms26062386. Int J Mol Sci. 2025. PMID: 40141029 Free PMC article. Review.
References
-
- Boyans V.; Ricco J. B.; Bartelink M. E. L.; Björck M.; Brodmann M.; Cohnert T.; Collet J. P.; Czerny M.; De Carlo M.; Debus S.; Espinola-Klein C.; Kahan T.; Kownator S.; Mazzolai L.; Naylor A. R.; Roffi M.; Röther J.; Sprynger M.; Tendera M.; Tepe G.; et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries. Eur. Heart J. 2018, 39 (9), 763–816. 10.1093/eurheartj/ehx095. - DOI - PubMed
-
- Conte M. S.; Bradbury A. W.; Kolh P.; White J. V.; Dick F.; Fitridge R.; Mills J. L.; Ricco J. B.; Suresh K. R.; Murad M. H.; Aboyans V.; et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. J. Vasc. Surg. 2019, 69 (6), 3S–125S. 10.1016/j.jvs.2019.02.016. - DOI - PMC - PubMed
-
- Anand S. S.; Caron F.; Eikelboom J. W.; Bosch J.; Dyal L.; Aboyans V.; Abola M. T.; Branch K. R. H.; Keltai K.; Bhatt D. L.; Verhamme P.; Fox K. A. A.; Cook-Bruns N.; Lanius V.; Connolly S. J.; Yusuf S. Major adverse limb events and mortality in patients with peripheral artery disease: The COMPASS trial. J. Am. Coll. Cardiol. 2018, 71 (20), 2306–2315. 10.1016/j.jacc.2018.03.008. - DOI - PubMed
-
- Isner J. M.; Pieczek A.; Schainfeld R.; Blair R.; Haley L.; Asahara T.; Rosenfield K.; Razvi S.; Walsh K.; Symes J. F. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 1996, 348 (9024), 370–374. 10.1016/S0140-6736(96)03361-2. - DOI - PubMed
-
- Pyun W. B.; Hahn W.; Kim D. S.; Yoo W. S.; Lee S. D.; Won J. H.; Rho B. S.; Park Z. Y.; Kim J. M.; Kim S. Naked DNA expressing two isoforms of hepatocyte growth factor induces collateral artery augmentation in a rabbit model of limb ischemia. Gene Ther. 2010, 17 (12), 1442–1452. 10.1038/gt.2010.101. - DOI - PubMed