How to improve the mechanical safety of a novel spinal implant while saving costs and time
- PMID: 39726899
- PMCID: PMC11669745
- DOI: 10.1002/jsp2.70026
How to improve the mechanical safety of a novel spinal implant while saving costs and time
Abstract
Background: Spinal implant failure is associated with prolonged patient suffering, high costs for the medical device industry, and a high economic burden for the health care system. Pre-clinical mechanical testing has great potential to reduce the risk of such failure. However, there are no binding regulations for planning and interpretation of mechanical testing. Therefore, different strategies exist. Mainly for novel implants an option is to start with a structured scientific literature search that forms an objective background for the definition of an implant-specific test plan, the derivation of acceptance criteria and interpretation of the test results.
Methods: This paper describes, how a literature-based approach can look like from the initial literature search through the derivation of the test plan and the acceptance criteria, to the final test result evaluation and how this approach can support the proof that the device meets all necessary safety and performance standards.
Results: The main advantage of this literature-based approach is that testing and test result interpretation are linked with the loads acting on the individual implant in vivo. In an ideal case, testing is focused on the individual implant in a way that ensures maximum efficiency during the development and approval process combined with maximum insight in safety and effectiveness of the implant. Even comparative implant testing may become obsolete, which is a big advantage if comparative implant and related data are not available.
Conclusion: This approach to pre-clinical mechanical testing offers the potential to create a chain of arguments, from literature review through testing to the interpretation of test results. This methodology can significantly enhance testing efficiency, reduce risk of failure, and ultimately prevent unnecessary patient suffering and healthcare costs. By synthesizing scientific insights with regulatory requirements, this review aims to guide clinicians and researchers in improving patient care and advancing device technologies.
Keywords: approval; biomechanical testing; implant; mechanical safety; mechanical testing; performance; predicate device; risk‐analysis; spine.
© 2024 The Author(s). JOR Spine published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.
Figures









Similar articles
-
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247. Zhonghua Jie He He Hu Xi Za Zhi. 2024. PMID: 38309959 Chinese.
-
The future of Cochrane Neonatal.Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12. Early Hum Dev. 2020. PMID: 33036834
-
Cementless, Cruciate-Retaining Primary Total Knee Arthroplasty Using Conventional Instrumentation: Technical Pearls and Intraoperative Considerations.JBJS Essent Surg Tech. 2024 Sep 13;14(3):e23.00036. doi: 10.2106/JBJS.ST.23.00036. eCollection 2024 Jul-Sep. JBJS Essent Surg Tech. 2024. PMID: 39280965 Free PMC article.
-
Multi-gene Pharmacogenomic Testing That Includes Decision-Support Tools to Guide Medication Selection for Major Depression: A Health Technology Assessment.Ont Health Technol Assess Ser. 2021 Aug 12;21(13):1-214. eCollection 2021. Ont Health Technol Assess Ser. 2021. PMID: 34484487 Free PMC article.
-
Determination of the in vivo posterior loading environment of the Coflex interlaminar-interspinous implant.Spine J. 2010 Mar;10(3):244-51. doi: 10.1016/j.spinee.2009.10.010. Epub 2009 Dec 11. Spine J. 2010. PMID: 20004622 Review.
References
-
- Battelle . Materials Matter: Solving Material‐Related Medical Device Failures. 845_Material‐Related‐Medical‐Device‐Failures_WP(FINAL), 2023:1–6.
-
- Pressman E, Liaw D, Monsour M, Wang CP, Gassie K, Alikhani P. Factors associated with hardware failure after lateral thoracolumbar fusions – a ten year case series. Clin Neurol Neurosurg. 2023;224:107564. - PubMed
-
- Neukamp M, Roeder C, Veruva SY, MacDonald DW, Kurtz SM, Steinbeck MJ. In vivo compatibility of Dynesys® spinal implants: a case series of five retrieved periprosthetic tissue samples and corresponding implants. Eur Spine J. 2015;24(5):1074‐1084. - PubMed
Publication types
LinkOut - more resources
Full Text Sources