Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1985 Feb;75(2):710-21.
doi: 10.1172/JCI111751.

Effect of heparin-induced lipolysis on the distribution of apolipoprotein e among lipoprotein subclasses. Studies with patients deficient in hepatic triglyceride lipase and lipoprotein lipase

Comparative Study

Effect of heparin-induced lipolysis on the distribution of apolipoprotein e among lipoprotein subclasses. Studies with patients deficient in hepatic triglyceride lipase and lipoprotein lipase

A Rubinstein et al. J Clin Invest. 1985 Feb.

Abstract

In normal subjects, apolipoprotein E (apo E) is present on very low density lipoproteins (VLDL) (fraction I) and on particles of a size intermediate between VLDL and low density lipoproteins (LDL) (fraction II). The major portion of apo E is, however, on particles smaller than LDL but larger than the average high density lipoproteins (HDL) (fraction III). To investigate the possible role of the vascular lipases in determining this distribution of apo E among the plasma lipoproteins, we studied subjects with primary deficiency of either hepatic lipase or of lipoprotein lipase and compared them with normal subjects. Subjects with familial hepatic triglyceride lipase deficiency (n = 2) differ markedly from normal in that fraction II is the dominant apo E-containing group of lipoproteins. When lipolysis of VLDL was enhanced in these subjects upon release of lipoprotein lipase by intravenous heparin, a shift of the apo E from VLDL into fractions II and III was observed. In contrast, apolipoproteins CII and CIII (apo CII and CIII, respectively) did not accumulate in intermediate-sized particles but were shifted markedly from triglyceride rich lipoproteins to HDL after treatment with heparin. In subjects with primary lipoprotein lipase deficiency (n = 4), apo E was confined to fractions I and III. Release of hepatic triglyceride lipase by heparin injection in these subjects produced a shift of apo E from fraction I to III with no significant increase in fraction II. This movement of apo E from large VLDL and chylomicron-sized particles occurred with little hydrolysis of triglyceride and no significant shift of apo CII or CIII into HDL from triglyceride rich lipoproteins. When both lipoprotein lipase and hepatic triglyceride lipase were released by intravenous heparin injection into normal subjects (n = 3), fraction I declined and the apo E content of fraction III increased by an equivalent amount. Either moderate or no change was noted in the intermediate sized particles (fraction II). These data strongly support the hypothesis that fraction II is the product of the action of lipoprotein lipase upon triglyceride rich lipoproteins and is highly dependent on hepatic triglyceride lipase for its further catabolism. In addition, the hydrolysis by hepatic triglyceride lipase of triglyceride rich lipoproteins in general results in a preferential loss of apo E and its transfer to a specific group of large HDL.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Clin Invest. 1982 Dec;70(6):1184-92 - PubMed
    1. Biochim Biophys Acta. 1982 Jul 20;712(1):94-102 - PubMed
    1. FEBS Lett. 1982 Dec 13;150(1):255-9 - PubMed
    1. J Lipid Res. 1982 Dec;23(9):1308-16 - PubMed
    1. Biochim Biophys Acta. 1983 May 16;751(3):393-400 - PubMed

Publication types