Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Feb;12(7):e2409551.
doi: 10.1002/advs.202409551. Epub 2024 Dec 27.

One-Pot Synthesis of Oxygen Vacancy-Rich Amorphous/Crystalline Heterophase CaWO4 Nanoparticles for Enhanced Radiodynamic-Immunotherapy

Affiliations

One-Pot Synthesis of Oxygen Vacancy-Rich Amorphous/Crystalline Heterophase CaWO4 Nanoparticles for Enhanced Radiodynamic-Immunotherapy

Shanshan Peng et al. Adv Sci (Weinh). 2025 Feb.

Abstract

Radiodynamic therapy that employs X-rays to trigger localized reactive oxygen species (ROS) generation can tackle the tissue penetration issue of phototherapy. Although calcium tungstate (CaWO4) shows great potential as a radiodynamic agent benefiting from its strong X-ray absorption and the ability to generate electron-hole (e--h+) pairs, slow charge carrier transfer and fast e--h+ recombination greatly limit its ROS-generating performance. Herein, via a one-pot wet-chemical method, oxygen vacancy-rich amorphous/crystalline heterophase CaWO4 nanoparticles (Ov-a/c-CaWO4 NPs) with enhanced radiodynamic effect are synthesized for radiodynamic-immunotherapy of cancer. The phase composition and oxygen vacancy content of CaWO4 can be easily tuned by adjusting the solvothermal temperature. More intriguingly, the amorphous/crystalline interfaces and abundant oxygen vacancies accelerate charge carrier transfer and suppress e--h+ recombination, respectively, enabling synergistically improved ROS production from X-ray-irradiated Ov-a/c-CaWO4 NPs. In addition to directly inducing oxidative damage of cancer cells, radiodynamic generation of ROS also boosts immunogenic cell death to provoke a systemic antitumor immune response, thereby allowing the inhibition of both primary and distant tumors as well as cancer metastasis. This study establishes a synergistic enhancement strategy involving the integration of phase and defect engineering to improve the ROS generation capacity of radiodynamic-immunotherapeutic anticancer nanoagents.

Keywords: CaWO4 nanoparticles; enhanced radiodynamic effect; heterophase; oxygen vacancies; radiodynamic‐immunotherapy.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Scheme 1
Scheme 1
Schematic representation of the one‐pot solvothermal synthesis of Ov‐a/c‐CaWO4 NPs with enhanced radiodynamic effect for low‐dose X‐ray‐triggered radiodynamic‐immunotherapy of cancer.
Figure 1
Figure 1
Characterization of Ov‐a/c‐CaWO4 NPs. a) TEM and b) high‐resolution TEM images of Ov‐a/c‐CaWO4 NPs. b1) The representative crystalline domain marked by the red square in (b) and b2) its fast Fourier transform (FFT) pattern. b3) The representative amorphous domain marked by the green square in (b) and b4) its FFT pattern. c) SAED image of Ov‐a/c‐CaWO4 NPs. d) XRD patterns of CaWO4 NPs prepared at different temperatures including RT, 60 °C, 110 °C, or 160 °C. e) Survey and f) O 1s XPS spectra of CaWO4 NPs prepared at different temperatures. OL: lattice oxygen, OV: oxygen vacancies, OA: surface‐adsorbed oxygen species. g) The ratios of Ov in O 1s XPS spectra. h) EPR spectra of CaWO4 NPs prepared at various temperatures.
Figure 2
Figure 2
Radiodynamic ROS generation performance and mechanism of Ov‐a/c‐CaWO4 NPs. a) Fluorescence spectra of 2′,7′‐dichlorodihydrofluorescein (DCFH) mixed with various CaWO4 NPs synthesized at different temperatures (including RT, 60, 110, or 160 °C) after X‐ray irradiation (0.5 Gy). The generation of b) •OH, c) O2 •−, and d) 1O2 from diverse CaWO4 NPs under X‐ray irradiation at 0.5 Gy, measured by aminophenyl fluorescein (APF), dihydrorhodamine 123 (DHR 123), and singlet oxygen sensor green (SOSG), respectively. e) The band structures of Ov‐a/c‐CaWO4 NPs and the energy levels of •OH‐, O2 •−‐, and 1O2‐generating processes. f) EIS and g) RL spectra of CaWO4 NPs prepared at different temperatures. h) Schematic illustration of the synergistic enhancement mechanism of amorphous/crystalline heterophase interfaces and oxygen vacancies on the radiodynamic effect of Ov‐a/c‐CaWO4 NPs.
Figure 3
Figure 3
In vitro RDT performance of Ov‐a/c‐CaWO4 NPs. a) Cell viability of 4T1 cells exposed to different concentrations of Ov‐a/c‐CaWO4 NPs for 12 h and then treated with or without X‐ray irradiation (0.5 Gy). n = 3. b) Cell viability of Ov‐a/c‐CaWO4 NPs‐incubated 4T1 cells after exposure to X‐ray irradiation at various doses ([Ov‐a/c‐CaWO4 NPs] = 100 µg mL−1). n = 3. c) Calcein‐AM/PI costaining of 4T1 cells treated with X‐ray irradiation, Ov‐a/c‐CaWO4 NPs, or Ov‐a/c‐CaWO4 NPs plus X‐ray irradiation. d) Flow cytometry analysis of cancer cell apoptosis after diverse treatments. Fluorescence images of 4T1 cells stained with e) DCFH‐DA or f) C11‐BODIPY581/591 after treatment with X‐ray irradiation, Ov‐a/c‐CaWO4 NPs, or Ov‐a/c‐CaWO4 NPs plus X‐ray irradiation (0.5 Gy). Data are presented as mean ± SD. *** p <0.001.
Figure 4
Figure 4
Radiodynamically generated ROS‐triggered ICD and immune response by Ov‐a/c‐CaWO4 NPs in vitro. Immunofluorescence staining of a) HMGB1 release and b) CRT exposure in 4T1 cells treated with X‐ray irradiation, Ov‐a/c‐CaWO4 NPs, or Ov‐a/c‐CaWO4 NPs plus X‐ray irradiation. c) The levels of released ATP in cell culture medium from different groups. n = 3. d) Schematic illustration of co‐culture system established for evaluating the maturation of DCs after exposure to 4T1 cells pre‐treated with Ov‐a/c‐CaWO4 NPs plus X‐ray irradiation (0.5 Gy). e) Flow cytometry and f) quantitative analysis of CD80+CD86+ DCs after exposure to 4T1 cells with different treatments (gated on CD11c+ cells). n = 3. The secretion of g) IL‐6, h) IL‐12p70, and i) TNF‐α in cell culture medium from various groups. n = 3. Data are presented as mean ± SD. ** p <0.01, *** p <0.001.
Figure 5
Figure 5
In vivo tumor accumulation and X‐ray‐triggered antitumor efficacy of Ov‐a/c‐CaWO4 NPs. a) Therapeutic schedule for 4T1 tumor‐bearing mice. b) Fluorescence images of 4T1 tumor‐bearing mice and c) the corresponding fluorescence intensity in tumors after i.v. injection of Cy5.5‐labeled Ov‐a/c‐CaWO4 NPs. n = 3. d) Tumor growth curves of 4T1 tumor‐bearing mice after treatment with PBS, X‐ray irradiation, Ov‐a/c‐CaWO4 NPs, or Ov‐a/c‐CaWO4 NPs plus X‐ray irradiation. n = 6. e) Body weight curves of different groups of mice. n = 6. f) H&E and g) TUNEL staining of tumor sections harvested from various groups. Data are presented as mean ± SD. *** p <0.001.
Figure 6
Figure 6
Tumor metastasis inhibition by Ov‐a/c‐CaWO4 NPs‐mediated radiodynamic‐immunotherapy. a) Therapeutic schedule for bilateral 4T1 tumor model. Tumor growth curves of b) primary and c) distant tumors in bilateral 4T1 tumor‐bearing mice after treatment with PBS, X‐ray irradiation, Ov‐a/c‐CaWO4 NPs, or Ov‐a/c‐CaWO4 NPs plus X‐ray irradiation (0.5 Gy). n = 6. d) Survival curves of mice after different treatments. n = 10. e) Quantitative analysis by flow cytometry of mature DCs (CD80+CD86+ DCs) in tumor‐draining lymph nodes of mice after various treatments (gated on CD11c+ cells). n = 3. Quantitative analysis by flow cytometry of CD4+ T cells (CD3+CD4+) and CD8+ T cells (CD3+CD8+) in f, g) spleens or h, i) distant tumors of different groups of mice (gated on CD3+ cells). n = 3. The levels of j) IL‐6, k) IL‐12p70, l) TNF‐α, and m) IFN‐γ in the serum of mice from various groups. n = 3. n) H&E staining of lung tissues harvested from different groups on day 28. Red arrows indicate the metastatic nodules. Data are presented as mean ± SD. ** p <0.01, *** p <0.001.

Similar articles

References

    1. a) Lin L., Wang S., Deng H., Yang W., Rao L., Tian R., Liu Y., Yu G., Zhou Z., Song J., Yang H.‐H., Chen Z.‐Y., Chen X., J. Am. Chem. Soc. 2020, 142, 15320; - PubMed
    2. b) Castano A. P., Mroz P., Hamblin M. R., Nat. Rev. Cancer 2006, 6, 535; - PMC - PubMed
    3. c) Tang Y., Bisoyi H. K., Chen X.‐M., Liu Z., Chen X., Zhang S., Li Q., Adv. Mater. 2023, 35, 2300232; - PubMed
    4. d) Wang J., Ding H., Zhu Y., Liu Y., Yu M., Cai H., Ao R., Huang H., Gong P., Liao Y., Chen Z., Lin L., Chen X., Yang H., Angew. Chem., Int. Ed. 2023, 135, e202302255; - PubMed
    5. e) Zhu Y., Gong P., Wang J., Cheng J., Wang W., Cai H., Ao R., Huang H., Yu M., Lin L., Chen X., Angew. Chem., Int. Ed. 2023, 62, e202218407. - PubMed
    1. a) Moore C. M., Pendse D., Emberton M., Nat. Clin. Pract. Urol. 2009, 6, 18; - PubMed
    2. b) Zeng S., Chen J., Gao R., Chen R., Xue Q., Ren Y., Liu L., Tang C., Hu H., Zeng N., Wen S., Zhang H., Liu C., Fang C., Adv. Mater. 2023, 36, 2308780; - PubMed
    3. c) Zhou H., Tang D., Yu Y., Zhang L., Wang B., Karges J., Xiao H., Nat. Commun. 2023, 14, 5350. - PMC - PubMed
    4. d) Li X., Lovell J. F., Yoon J., Chen X., Nat. Rev. Clin. Oncol. 2020, 17, 657; - PubMed
    5. e) Teng K.‐X., Niu L.‐Y., Yang Q.‐Z., J. Am. Chem. Soc. 2023, 145, 4081;
    6. f) Chen T., Hou P., Zhang Y., Ao R., Su L., Jiang Y., Zhang Y., Cai H., Wang J., Chen Q., Song J., Lin L., Yang H., Chen X., Angew. Chem., Int. Ed. 2021, 133, 15133. - PubMed
    7. g) Yang Y., Hu T., Bian Y., Meng F., Yu S., Li H., Zhang Q., Gu L., Weng X., Tan C., Liang R., Adv. Mater. 2023, 35, 2211205. - PubMed
    1. a) Fan W., Huang P., Chen X., Chem. Soc. Rev. 2016, 45, 6488; - PubMed
    2. b) Sorbellini E., Rucco M., Rinaldi F., Lasers Med. Sci. 2018, 33, 1431; - PMC - PubMed
    3. c) Yu M., Ye Z., Liu S., Zhu Y., Niu X., Wang J., Ao R., Huang H., Cai H., Liu Y., Chen X., Lin L., Angew. Chem., Int. Ed. 2024, 63, e202318155. - PubMed
    1. a) Begg A. C., Stewart F. A., Vens C., Nat. Rev. Cancer 2011, 11, 239; - PubMed
    2. b) Withers P. J., Bouman C., Carmignato S., Cnudde V., Grimaldi D., Hagen C. K., Maire E., Manley M., Du Plessis A., Stock S. R., Nat. Rev. Methods Primers 2021, 1, 18;
    3. c) Rabin O., Manuel Perez J., Grimm J., Wojtkiewicz G., Weissleder R., Nat. Mater. 2006, 5, 118; - PubMed
    4. d) Schaue D., McBride W. H., Nat. Rev. Clin. Oncol. 2015, 12, 527. - PMC - PubMed
    5. e) Baumann M., Krause M., Overgaard J., Debus J., Bentzen S. M., Daartz J., Richter C., Zips D., Bortfeld T., Nat. Rev. Cancer 2016, 16, 234. - PubMed
    1. a) Sun W., Shi T., Luo L., Chen X., Lv P., Lv Y., Zhuang Y., Zhu J., Liu G., Chen X., Adv. Mater. 2019, 31, 1808024; - PubMed
    2. b) Song L., Li P., Yang W., Lin X., Liang H., Chen X., Liu G., Li J., Yang H., Adv. Funct. Mater. 2018, 28, 1707496;
    3. c) Lu L., Sun M., Lu Q., Wu T., Huang B., Nano Energy 2021, 79, 105437.

LinkOut - more resources