Multi-omics profiling reveals altered mitochondrial metabolism in adipose tissue from patients with metabolic dysfunction-associated steatohepatitis
- PMID: 39731853
- PMCID: PMC11743550
- DOI: 10.1016/j.ebiom.2024.105532
Multi-omics profiling reveals altered mitochondrial metabolism in adipose tissue from patients with metabolic dysfunction-associated steatohepatitis
Abstract
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) and its more severe form steatohepatitis (MASH) contribute to rising morbidity and mortality rates. The storage of fat in humans is closely associated with these diseases' progression. Thus, adipose tissue metabolic homeostasis could be key in both the onset and progression of MASH.
Methods: We conducted a case-control observational research using a systems biology-based approach to analyse liver, abdominal subcutaneous adipose tissue (SAT), omental visceral adipose tissue (VAT), and blood of n = 100 patients undergoing bariatric surgery (NCT05554224). MASH was diagnosed through histologic assessment. Whole-slide image analysis, lipidomics, proteomics, and transcriptomics were performed on tissue samples. Lipidomics and proteomics profiles were determined on plasma samples.
Findings: Liver transcriptomics, proteomics, and lipidomics revealed interconnected pathways associated with inflammation, mitochondrial dysfunction, and lipotoxicity in MASH. Paired adipose tissue biopsies had larger adipocyte areas in both fat depots in MASH. Enrichment analyses of proteomics and lipidomics data confirmed the association of liver lesions with mitochondrial dysfunction in VAT. Plasma lipidomics identified candidates with high diagnostic accuracy (AUC = 0.919, 95% CI 0.840-0.979) for screening MASH.
Interpretation: Mitochondrial dysfunction is also present in VAT in patients with obesity-associated MASH. This may cause a disruption in the metabolic equilibrium of lipid processing and storage, which impacts the liver and accelerates detrimental adaptative responses.
Funding: The project leading to these results has received funding from 'la Caixa' Foundation (HR21-00430), and from the Instituto de Salud Carlos III (ISCIII) (PI21/00510) and co-funded by the European Union.
Keywords: Interorgan crosstalk; Lipidomics; MASLD; Multi-omics; Multi-tissue.
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare that they have no competing interests.
Figures






References
-
- Paik J.M., Golabi P., Younossi Y., Mishra A., Younossi Z.M. Changes in the global burden of chronic liver diseases from 2012 to 2017: the growing impact of NAFLD. Hepatology. 2020;72:1605–1616. - PubMed
-
- Matteoni C., Younossi Z., Gramlich T., Boparai N., Liu Y., McCullough A. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116:1413–1419. - PubMed
-
- Younossi Z.M., Blissett D., Blissett R., et al. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology. 2016;64:1577–1586. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials