Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan 27:146:113914.
doi: 10.1016/j.intimp.2024.113914. Epub 2024 Dec 27.

ADSCs-derived exosomes suppress macrophage ferroptosis via the SIRT1/NRF2 signaling axis to alleviate acute lung injury in sepsis

Affiliations

ADSCs-derived exosomes suppress macrophage ferroptosis via the SIRT1/NRF2 signaling axis to alleviate acute lung injury in sepsis

Xiaozhi Bai et al. Int Immunopharmacol. .

Abstract

Acute lung injury being one of the earliest and most severe complications during sepsis and macrophages play a key role in this process. To investigate the regulatory effects and potential mechanisms of adipose mesenchymal stem cell derived-exosomes (ADSC-exo) on macrophages and septic mice, ADSCs-exo was administrated to both LPS-induced macrophage and cecal ligation and puncture (CLP) induced sepsis mice. ADSCs-exo was confirmed to inhibit M1 polarization of macrophages and to reduce excessive inflammation. The use of ADSCs-exo in CLP mice and in LPS-induced macrophages relieved oxidative stress, cellular damage, and acute lung injury. During this process, ADSCs-exo increased the nuclear translocation of Nrf2, significantly upregulating the activation of the antioxidant pathway Nrf2/HO-1. Concurrently, they enhanced the expression of SIRT1 in macrophages. Further SIRT1 interference experiments demonstrated that ADSCs-exo mitigated macrophage inflammatory responses and LPS-induced ferroptosis by upregulating SIRT1. In the LPS-induced macrophage model, after SIRT1 was interfered with, ADSCs-exo failed to upregulate the Nrf2/HO-1 signaling pathway, leading to enhanced ferroptosis. Finally, in a CLP sepsis mouse model with myeloid-specific SIRT1 knockout, ADSCs-exo was observed to reduce lung tissue injury, oxidative stress damage, and ferroptosis. Still, these beneficial effects were reversed due to the myeloid-specific knockout of SIRT1, while co-administration of a ferroptosis inhibitor rescued this situation, alleviating lung injury and significantly reducing tissue levels of oxidative stress. In conclusion, this study elucidated a novel potential therapeutic mechanism wherein ADSCs-exo upregulates the levels of SIRT1 in macrophages through a non-delivery approach.

Keywords: Acute lung injury; Exosome; Ferroptosis; Nrf2; SIRT1; Sepsis.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

MeSH terms