Current opinion on pluripotent stem cell technology in Gaucher's disease: challenges and future prospects
- PMID: 39735330
- PMCID: PMC11680541
- DOI: 10.1007/s10616-024-00687-2
Current opinion on pluripotent stem cell technology in Gaucher's disease: challenges and future prospects
Abstract
Gaucher's disease (GD) is a rare autosomal recessive genetic disorder caused by mutations in the GBA1 gene. Mutations in the gene lead to the deficiency of glucocerebrosidase, an enzyme that helps in the breakdown of glucosylceramide (GlcCer) into ceramide and glucose. The lack of the enzyme causes GlcCer accumulation in macrophages, resulting in various phenotypic characteristics of GD. The currently available therapies, including enzyme replacement therapy and substrate reduction therapy, only provide symptomatic relief. However, they grapple with limitations in efficacy, accessibility, and potential side effects. These observations laid the foundation to search for new approaches in the management of GD. Induced pluripotent stem cells (iPSCs) technology emerges as a beacon of hope, offering novel avenues for future GD therapies. The true magic of iPSCs lies in their ability to differentiate into various cell types. By reprogramming patient-derived cells into iPSCs, researchers can generate personalized models that recapitulate the genetic and phenotypic characteristics of the GD. These models are valuable tools for dissecting intricate disease pathways, developing novel therapeutic targets, and enhancing the drug development process for GD. This review emphasizes the significance of iPSCs technology in GD management. Further, it addresses several challenges that are being encountered in the application of iPSC technology in the management of GD. In addition, it provides several insights into the future aspects of iPSC technology in the management of GD.
Keywords: Gaucher’s disease; Gaucher’s disease model; Glucocerebrosidase; Glucosylceramide; Human induced pluripotent stem cell; Wnt; mTOR.
© The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Conflict of interest statement
Conflicts of interestThe authors declare no competing interests.
Similar articles
-
The clinical effectiveness and cost-effectiveness of enzyme replacement therapy for Gaucher's disease: a systematic review.Health Technol Assess. 2006 Jul;10(24):iii-iv, ix-136. doi: 10.3310/hta10240. Health Technol Assess. 2006. PMID: 16796930
-
Relationship between Pituitary Gland and Stem Cell in the Aspect of Hormone Production and Disease Prevention: A Narrative Review.Endocr Metab Immune Disord Drug Targets. 2025;25(7):509-526. doi: 10.2174/0118715303314551241031093717. Endocr Metab Immune Disord Drug Targets. 2025. PMID: 39812047 Review.
-
Systematic review of induced pluripotent stem cell technology as a potential clinical therapy for spinal cord injury.Cell Transplant. 2013;22(4):571-617. doi: 10.3727/096368912X655208. Epub 2012 Aug 27. Cell Transplant. 2013. PMID: 22944020
-
Home treatment for mental health problems: a systematic review.Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150. Health Technol Assess. 2001. PMID: 11532236
-
Accreditation through the eyes of nurse managers: an infinite staircase or a phenomenon that evaporates like water.J Health Organ Manag. 2025 Jun 30. doi: 10.1108/JHOM-01-2025-0029. Online ahead of print. J Health Organ Manag. 2025. PMID: 40574247
References
-
- Aflaki E, Stubblefield BK, Maniwang E, Lopez G, Moaven N, Goldin E, Marugan J, Patnaik S, Dutra A, Southall N, Zheng W, Tayebi N, Sidransky E (2014b) Macrophage models of gaucher disease for evaluating disease pathogenesis and candidate drugs. Sci Transl Med. 10.1126/scitranslmed.3008659 - PMC - PubMed
-
- Aflaki E, Borger DK, Moaven N, Stubblefield BK, Rogers SA, Patnaik S, Schoenen FJ, Westbroek W, Zheng W, Sullivan P (2016a) A new glucocerebrosidase chaperone reduces α-synuclein and glycolipid levels in iPSC-derived dopaminergic neurons from patients with Gaucher disease and parkinsonism. J Neurosci 36:7441–7452 - PMC - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Miscellaneous