Expression of a periplasmic β-glucosidase from Yarrowia lipolytica allows efficient cellobiose-xylose co-fermentation by industrial xylose-fermenting Saccharomyces cerevisiae strains
- PMID: 39739240
- PMCID: PMC11885199
- DOI: 10.1007/s42770-024-01609-2
Expression of a periplasmic β-glucosidase from Yarrowia lipolytica allows efficient cellobiose-xylose co-fermentation by industrial xylose-fermenting Saccharomyces cerevisiae strains
Abstract
This study aimed to compare the effects of cellobiose hydrolysis, whether occurring inside or outside the cell, on the ability of Saccharomyces cerevisiae strains to ferment this sugar and then apply the most effective strategy to industrial S. cerevisiae strains. Firstly, two recombinant laboratory S. cerevisiae strains were engineered: CEN.PK-X-Bgl1YL, expressing the periplasmic β-glucosidase BGL1 from Yarrowia lipolytica; and CEN.PK-X-B7-T2, co-expressing the intracellular β-glucosidase SpBGL7 from Spathaspora passalidarum and the cellobiose transporter MgCBT2 from Meyerozyma guilliermondii. Both engineered strains were able to grown in media with cellobiose and to ferment this disaccharide. However, CEN.PK-X-Bgl1YL, which hydrolyzes cellobiose extracellularly, exhibited faster growth and superior batch fermentation performance. Furthermore, enzymatic and transport activities revealed that sugar uptake was possibly the limiting factor in cellobiose fermentation by CEN.PK-X-B7-T2. Since extracellular hydrolysis with the periplasmic β-glucosidase was more efficient for cellobiose fermentation, we integrated the BGL1 gene into two industrial xylose-fermenting S. cerevisiae strains. The resulting strains (MP-C5H1-Bgl1YL and MP-P5-Bgl1YL) efficiently co-consumed ∼ 22 g L- 1 of cellobiose and ∼ 22 g L- 1 of xylose in 24 h, achieving high ethanol production levels (∼ 17 g L- 1 titer, ∼ 0.50 g L- 1 h- 1 volumetric productivity, and 0.40 g g- 1 ethanol yield). Our findings suggest that the expression of periplasmic β-glucosidases in S. cerevisiae could be an effective strategy to overcome the disaccharide transport problem, thus enabling efficient cellobiose fermentation or even cellobiose-xylose co-fermentation.
Keywords: 2G biorefineries; Bioethanol; Cellobiose; Co-fermentation; Xylose; Yeasts.
© 2024. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia.
Conflict of interest statement
Declarations. Conflict of interest: The authors report there are no competing interests to declare.
Similar articles
-
Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae.Bioresour Technol. 2013 Dec;149:525-31. doi: 10.1016/j.biortech.2013.09.082. Epub 2013 Sep 27. Bioresour Technol. 2013. PMID: 24140899
-
Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae.J Biotechnol. 2014 Jan;169:34-41. doi: 10.1016/j.jbiotec.2013.10.030. Epub 2013 Oct 31. J Biotechnol. 2014. PMID: 24184384
-
Engineering Saccharomyces cerevisiae for ethanol production from glycerol, xylose, acetic acid, and glucose.Bioresour Technol. 2025 Nov;435:132921. doi: 10.1016/j.biortech.2025.132921. Epub 2025 Jun 30. Bioresour Technol. 2025. PMID: 40602668
-
Metabolic engineering of Saccharomyces cerevisiae for efficient utilization of pectin-rich biomass.J Microbiol. 2025 Jul;63(7):e2503001. doi: 10.71150/jm.2503001. Epub 2025 Jul 31. J Microbiol. 2025. PMID: 40741630 Review.
-
Recent progress in engineering yeast producers of cellulosic ethanol.FEMS Yeast Res. 2025 Jan 30;25:foaf035. doi: 10.1093/femsyr/foaf035. FEMS Yeast Res. 2025. PMID: 40613832 Free PMC article. Review.
References
-
- Patel A, Shah AR (2021) Integrated lignocellulosic biorefinery: Gateway for production of second-generation ethanol and value-added products. J Bioresources Bioprod 6:108–128. 10.1016/j.jobab.2021.02.001
-
- Alves SL Jr, Scapini T, Warken A et al (2022) Engineered Saccharomyces or Prospected non-Saccharomyces: is there only one good choice for biorefineries? In: Alves SL Jr, Treichel H, Basso TO, Stambuk BU (eds) Yeasts: from nature to Bioprocesses. Bentram Science, Sharjah, pp 243–283. 10.2174/9789815051063122020011
-
- Louhasakul Y, Cheirsilp B (2022) Biotechnological applications of oleaginous yeasts. In: Alves SL Jr, Treichel H, Basso TO, Stambuk BU (eds) Yeasts: from nature to Bioprocesses. Bentram Science, Sharjah, pp 357–377. 10.2174/9789815051063122020014.
-
- Scapini T, Camargo AF, Mulinari J et al (2022) Spathaspora and Scheffersomyces: Promroles Roles in Biorefineries. In: Alves SL Jr, Treichel H, Basso TO, Stambuk BU (eds) Yeasts: from nature to Bioprocesses. Bentram Science, Sharjah, pp 216–242. 10.2174/9789815051063122020010
-
- dos Santos LV, de Barros Grassi MC, Gallardo JCM et al (2016) Second-generation ethanol: the need is becoming a reality. Ind Biotechnol 12:40–57. 10.1089/ind.2015.0017
MeSH terms
Substances
Grants and funding
- Conselho Nacional de Desenvolvimento Científico e Tecnológico/Conselho Nacional de Desenvolvimento Científico e Tecnológico
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
- Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina/Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina
LinkOut - more resources
Full Text Sources
Miscellaneous