Biomaterials for Corneal Regeneration
- PMID: 39739318
- PMCID: PMC11809424
- DOI: 10.1002/advs.202408021
Biomaterials for Corneal Regeneration
Abstract
Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion. A variety of natural and synthetic biomaterials, along with decellularized cornea, have been employed in corneal wound healing. Commonly utilized natural biomaterials encompass proteins such as collagen, gelatin, and silk fibroin (SF), as well as polysaccharides including alginate, chitosan (CS), hyaluronic acid (HA), and cellulose. Synthetic biomaterials primarily consist of polyvinyl alcohol (PVA), poly(ε-caprolactone) (PCL), and poly (lactic-co-glycolic acid) (PLGA). Bio-based materials and their composites are primarily utilized as hydrogels, films, scaffolds, patches, nanocapsules, and other formats for the treatment of blinding ocular conditions, including corneal wounds, corneal ulcers, corneal endothelium, and stromal defects. This review attempts to summarize in vitro, preclinical, and clinical trial studies relevant to corneal regeneration using biomaterials within the last five years, and expect that these experiences and outcomes will inspire and provide practical strategies for the future development of biomaterials for corneal regeneration. Furthermore, potential improvements and difficulties for these biomaterials are discussed.
Keywords: biomaterials; corneal regeneration; natural materials; synthetic polymers; tissue engineering.
© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures







Similar articles
-
Biomaterials for bone tissue engineering: achievements to date and future directions.Biomed Mater. 2024 Dec 5;20(1). doi: 10.1088/1748-605X/ad967c. Biomed Mater. 2024. PMID: 39577395 Review.
-
Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.Mater Sci Eng C Mater Biol Appl. 2020 May;110:110698. doi: 10.1016/j.msec.2020.110698. Epub 2020 Jan 29. Mater Sci Eng C Mater Biol Appl. 2020. PMID: 32204012 Free PMC article. Review.
-
Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold.Int J Biol Macromol. 2020 Oct 15;161:377-388. doi: 10.1016/j.ijbiomac.2020.06.045. Epub 2020 Jun 9. Int J Biol Macromol. 2020. PMID: 32526297
-
Applications of biomaterials in corneal wound healing.J Chin Med Assoc. 2015 Apr;78(4):212-7. doi: 10.1016/j.jcma.2014.09.011. Epub 2014 Nov 10. J Chin Med Assoc. 2015. PMID: 25455161 Review.
-
Natural Biomaterials for Corneal Tissue Engineering, Repair, and Regeneration.Adv Healthc Mater. 2018 Aug;7(16):e1701434. doi: 10.1002/adhm.201701434. Epub 2018 May 29. Adv Healthc Mater. 2018. PMID: 29845780 Review.
Cited by
-
Mechanobiology in Action: Biomaterials, Devices, and the Cellular Machinery of Force Sensing.Biomolecules. 2025 Jun 10;15(6):848. doi: 10.3390/biom15060848. Biomolecules. 2025. PMID: 40563488 Free PMC article. Review.
-
Multifunctional applications of hydrogel materials in myocardial infarction treatment: from tissue repair to microenvironment regulation.RSC Adv. 2025 Sep 2;15(38):31564-31585. doi: 10.1039/d5ra05286f. eCollection 2025 Aug 29. RSC Adv. 2025. PMID: 40904844 Free PMC article. Review.
-
Corneal Endothelium Regeneration with Decellularized Porcine Corneal Extracellular Matrix Scaffolds.Tissue Eng Regen Med. 2025 Jul;22(5):735-746. doi: 10.1007/s13770-025-00734-9. Epub 2025 Jun 19. Tissue Eng Regen Med. 2025. PMID: 40536661
-
Self-healing adhesive oxidized guar gum hydrogel loaded with mesenchymal stem cell exosomes for corneal wound healing.J Nanobiotechnology. 2025 Apr 28;23(1):321. doi: 10.1186/s12951-025-03366-2. J Nanobiotechnology. 2025. PMID: 40296037 Free PMC article.
References
-
- Khosravimelal S., Mobaraki M., Eftekhari S., Ahearne M., Seifalian A. M., Gholipourmalekabadi M., Small 2021, 17, 2006335. - PubMed
-
- Aghamohammadzadeh H., Newton R. H., Meek K. M., Structure 2004, 12, 249. - PubMed
-
- Flaxman S. R., Bourne R. R. A., Resnikoff S., Ackland P., Braithwaite T., Cicinelli M. V., Das A., Jonas J. B., Keeffe J., Kempen J. H., Leasher J., Limburg H., Naidoo K., Pesudovs K., Silvester A., Stevens G. A., Tahhan N., Wong T. Y., Taylor H. R., Bourne R., Ackland P., Arditi A., Barkana Y., Bozkurt B., Braithwaite T., Bron A., Budenz D., Cai F., Casson R., Chakravarthy U., et al., Lancet Glob. Health 2017, 5, e1221. - PubMed
-
- Gain P., Jullienne R., He Z., Aldossary M., Acquart S., Cognasse F., Thuret G., 2016, 134, 167. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous