Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar 1;328(3):H658-H675.
doi: 10.1152/ajpheart.00470.2024. Epub 2024 Dec 31.

K+ currents in ventricular cardiomyocytes of p.N98S-calmodulin mutant mice

Affiliations
Free article

K+ currents in ventricular cardiomyocytes of p.N98S-calmodulin mutant mice

Shuai Guo et al. Am J Physiol Heart Circ Physiol. .
Free article

Abstract

Missense mutations in calmodulin (CaM)-encoding genes are associated with life-threatening ventricular arrhythmia syndromes. Here, we investigated the role of cardiac K+ channel dysregulation in arrhythmogenic long QT syndrome (LQTS) using a knock-in mouse model heterozygous for a recurrent mutation (p.N98S) in the Calm1 gene (Calm1N98S/+). Single-cell patch-clamp technique and whole heart optical voltage mapping were used to assess action potentials and whole cell currents. Ventricular action potential duration (APD) at baseline was similar between genotypes. The β-adrenergic agonist isoproterenol prolonged APD in myocytes and isolated perfused hearts from Calm1N98S/+, but not wild-type (Calm1+/+), mice. Current density-voltage relationships for the small-conductance calcium-activated K+ (SK) current and the inward rectifier K+ current did not significantly differ between Calm1+/+ and Calm1N98S/+ ventricular cardiomyocytes ± isoproterenol. Peak densities of other voltage-gated K+ currents were significantly larger in Calm1N98S/+ versus Calm1+/+ cells at voltages ≥40 mV, both without and with isoproterenol. Isoproterenol reduced outward KATP currents more in Calm1N98S/+ versus Calm1+/+ myocytes. Dialysis of Calm1+/+ cardiomyocytes with exogenous wild-type or N98S-CaM protein (5 µmol/L) via the pipette, respectively, increased and eliminated SK currents. The specific SK channel inhibitor apamin did not significantly alter the APD of Calm1+/+ or Calm1N98S/+ hearts ± isoproterenol. Thus, dysregulation of SK or voltage-gated K+ channels does not contribute to the β-adrenergic-induced LQTS of Calm1N98S/+ mice, possibly because cardiomyocyte content of endogenous N98S-CaM and/or its affinity for CaM-binding domains may be too low to modulate channel properties. The larger KATP current inhibition by isoproterenol may delay Calm1N98S/+ myocyte repolarization at low intracellular [ATP].NEW & NOTEWORTHY Despite in vitro and in silico evidence implicating cardiac K+ channel dysregulation in LQTS associated with missense mutations in genes-encoding calmodulin, their effects on native cardiac K+ currents are unknown. Using a knock-in mouse model harboring the p.N98S mutation in the Calm1 gene, we found no evidence for dysregulation of major cardiac K+ channels. Although these data do not support mechanistic findings from heterologous systems, our finding impacts efforts to improve therapies for calmodulinopathies.

Keywords: calmodulin mutation; inward rectifier potassium channel; long QT syndrome; small-conductance calcium-activated potassium channel; voltage-gated potassium channels.

PubMed Disclaimer

Similar articles

MeSH terms

Substances

LinkOut - more resources