The Actinobacillus pleuropneumoniae apxIV operon encodes an antibacterial toxin-immunity pair
- PMID: 39740637
- DOI: 10.1016/j.micres.2024.128043
The Actinobacillus pleuropneumoniae apxIV operon encodes an antibacterial toxin-immunity pair
Abstract
The ApxIVA protein belongs to a distinct class of a "clip and link" activity of Repeat-in-ToXin (RTX) exoproteins. Along with the three other pore-forming RTX toxins (ApxI, ApxII and ApxIII), ApxIVA serves as a major virulence factor of Actinobacillus pleuropneumoniae, the causative agent of porcine pneumonia. The gene encoding ApxIVA is located on a bicistronic operon downstream of the orf1 gene and is expressed exclusively under in vivo conditions. Both ApxIVA and ORF1 are essential for full virulence of A. pleuropneumoniae, but the molecular mechanisms by which they contribute to the pathogenicity are not yet understood. Here, we provide a comprehensive structural and functional analysis of ApxIVA and ORF1 proteins. Our findings reveal that the N-terminal segment of ApxIVA shares structural similarity with colicin M (ColM)-like bacteriocins and exhibits an antimicrobial activity. The ORF1 protein resembles the colicin M immunity protein (Cmi) and, like Cmi, is exported to the periplasm through its N-terminal signal peptide. Additionally, ORF1 can protect bacterial cells from the antimicrobial activity of ApxIVA, suggesting that ORF1 and ApxIVA function as an antibacterial toxin-immunity pair. Moreover, we demonstrate that fetal bovine serum could elicit ApxIVA and ORF1 production under in vitro conditions. These findings highlight the coordinated action of various RTX determinants, where the fine-tuned spatiotemporal production of ApxIVA may enhance the fitness of A. pleuropneumoniae, facilitating its invasion to a resident microbial community on the surface of airway mucosa.
Keywords: Actinobacillus pleuropneumoniae; Bacterial; Infectious Diseases; Pathogenesis; RTX proteins; Structural biology; Toxin-antitoxin system.
Copyright © 2024 The Authors. Published by Elsevier GmbH.. All rights reserved.
Similar articles
-
Characterization of apxIVA, a new RTX determinant of Actinobacillus pleuropneumoniae.Microbiology (Reading). 1999 Aug;145 ( Pt 8):2105-2116. doi: 10.1099/13500872-145-8-2105. Microbiology (Reading). 1999. PMID: 10463177
-
In vivo induced RTX toxin ApxIVA is essential for the full virulence of Actinobacillus pleuropneumoniae.Vet Microbiol. 2009 Jun 12;137(3-4):282-9. doi: 10.1016/j.vetmic.2009.01.011. Epub 2009 Jan 8. Vet Microbiol. 2009. PMID: 19251385
-
Influences of ORF1 on the virulence and immunogenicity of Actinobacillus pleuropneumoniae.Curr Microbiol. 2011 Dec;63(6):574-80. doi: 10.1007/s00284-011-0016-0. Epub 2011 Oct 1. Curr Microbiol. 2011. PMID: 21964939
-
[Interaction between Actinobacillus pleuropneumoniae RTX toxin and host--a review].Wei Sheng Wu Xue Bao. 2009 Feb;49(2):141-6. Wei Sheng Wu Xue Bao. 2009. PMID: 19445166 Review. Chinese.
-
New trends in innovative vaccine development against Actinobacillus pleuropneumoniae.Vet Microbiol. 2018 Apr;217:66-75. doi: 10.1016/j.vetmic.2018.02.028. Epub 2018 Mar 6. Vet Microbiol. 2018. PMID: 29615259 Review.
Cited by
-
Evaluating the Immunogenic Potential of ApxI and ApxII from Actinobacillus pleuropneumoniae: An Immunoinformatics-Driven Study on mRNA Candidates.Vet Sci. 2025 Apr 27;12(5):414. doi: 10.3390/vetsci12050414. Vet Sci. 2025. PMID: 40431507 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources