BRISC-Mediated PPM1B-K63 Deubiquitination and Subsequent TGF-β Pathway Activation Promote High-Fat/High-Sucrose Diet-Induced Arterial Stiffness
- PMID: 39742393
- DOI: 10.1161/CIRCRESAHA.124.325590
BRISC-Mediated PPM1B-K63 Deubiquitination and Subsequent TGF-β Pathway Activation Promote High-Fat/High-Sucrose Diet-Induced Arterial Stiffness
Abstract
Background: Metabolic syndrome heightens cardiovascular disease risk primarily through increased arterial stiffness. We previously demonstrated the involvement of YAP (Yes-associated protein) in high-fat/high-sucrose diet (HFHSD)-induced arterial stiffness via modulation of PPM1B (protein phosphatase Mg2+/Mn2+-dependent 1B)-lysine 63(K63) deubiquitination. In this study, we aimed to elucidate the role and mechanisms underlying PPM1B deubiquitination in HFHSD-induced arterial stiffness.
Methods: Enzymes governing PPM1B deubiquitination were identified through small interfering RNA (siRNA) screening and mass spectrometry. Glutathione S-transferase pull-down, coimmunoprecipitation, protein purification, and immunofluorescence were used to explore the mechanism underlying PPM1B deubiquitination. Doppler ultrasound was used to evaluate HFHSD-induced arterial stiffness in mice, and telemetry was used to record pulsatile (systolic and diastolic) blood pressure.
Results: Smooth muscle cell-specific PPM1B overexpression attenuated HFHSD-induced arterial stiffness in mice in a PPM1B-K326-K63-linked polyubiquitination-dependent manner. Mechanistically, ABRO1 (Abraxas brother 1; a core BRCC36 [BRCA1/BRCA2 (breast cancer type 1/2)-containing complex subunit 36] isopeptidase complex component) directly bound YAP and underwent liquid-liquid phase separation with YAP and PPM1B in a YAP-dependent manner, which in turn promoted PPM1B deubiquitination. Furthermore, smooth muscle cell-specific Abro1-knockout mice and Brcc3-knockout mice showed attenuated HFHSD-induced arterial stiffness and activation of transforming growth factor-β-Smad (mothers against decapentaplegic homolog) signaling.
Conclusions: We elucidated the PPM1B deubiquitination mechanisms and highlighted a potential therapeutic target for metabolic syndrome-related arterial stiffness.
Keywords: diet; metabolic syndrome; mice; myocytes, smooth muscle; vascular stiffness.
Conflict of interest statement
None.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous
