Global organelle profiling reveals subcellular localization and remodeling at proteome scale
- PMID: 39742809
- DOI: 10.1016/j.cell.2024.11.028
Global organelle profiling reveals subcellular localization and remodeling at proteome scale
Abstract
Defining the subcellular distribution of all human proteins and their remodeling across cellular states remains a central goal in cell biology. Here, we present a high-resolution strategy to map subcellular organization using organelle immunocapture coupled to mass spectrometry. We apply this workflow to a cell-wide collection of membranous and membraneless compartments. A graph-based analysis assigns the subcellular localization of over 7,600 proteins, defines spatial networks, and uncovers interconnections between cellular compartments. Our approach can be deployed to comprehensively profile proteome remodeling during cellular perturbation. By characterizing the cellular landscape following HCoV-OC43 viral infection, we discover that many proteins are regulated by changes in their spatial distribution rather than by changes in abundance. Our results establish that proteome-wide analysis of subcellular remodeling provides key insights for elucidating cellular responses, uncovering an essential role for ferroptosis in OC43 infection. Our dataset can be explored at organelles.czbiohub.org.
Keywords: CRISPR; HCoV-OC43 coronavirus; cell biology; ferroptosis; k-NN graph; mass spectrometry; native organelle IP; protein localization; spatial proteomics; subcellular remodeling; viral infection.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare no competing interests.
Similar articles
-
Dynamic Organellar Maps for Spatial Proteomics.Curr Protoc Cell Biol. 2019 Jun;83(1):e81. doi: 10.1002/cpcb.81. Epub 2018 Nov 29. Curr Protoc Cell Biol. 2019. PMID: 30489039
-
A subcellular map of the human proteome.Science. 2017 May 26;356(6340):eaal3321. doi: 10.1126/science.aal3321. Epub 2017 May 11. Science. 2017. PMID: 28495876
-
Chemical proteomics for subcellular proteome analysis.Curr Opin Chem Biol. 2019 Feb;48:1-7. doi: 10.1016/j.cbpa.2018.08.001. Epub 2018 Aug 28. Curr Opin Chem Biol. 2019. PMID: 30170243 Review.
-
A draft map of the mouse pluripotent stem cell spatial proteome.Nat Commun. 2016 Jan 12;7:8992. doi: 10.1038/ncomms9992. Nat Commun. 2016. PMID: 26754106 Free PMC article.
-
Organellar Maps Through Proteomic Profiling - A Conceptual Guide.Mol Cell Proteomics. 2020 Jul;19(7):1076-1087. doi: 10.1074/mcp.R120.001971. Epub 2020 Apr 28. Mol Cell Proteomics. 2020. PMID: 32345598 Free PMC article. Review.
Cited by
-
ATG2A engages Rab1a and ARFGAP1 positive membranes during autophagosome biogenesis.bioRxiv [Preprint]. 2025 Mar 25:2025.03.24.645038. doi: 10.1101/2025.03.24.645038. bioRxiv. 2025. PMID: 40196537 Free PMC article. Preprint.
-
Identification and characterization of a human MORC2 DNA binding region that is required for gene silencing.Nucleic Acids Res. 2025 Feb 8;53(4):gkae1273. doi: 10.1093/nar/gkae1273. Nucleic Acids Res. 2025. PMID: 39739841 Free PMC article.
-
Tegavivint triggers TECR-dependent nonapoptotic cancer cell death.Nat Chem Biol. 2025 May 26. doi: 10.1038/s41589-025-01913-4. Online ahead of print. Nat Chem Biol. 2025. PMID: 40419770
-
Flower dependent trafficking of lamellar bodies facilitates maturation of the epidermal barrier.Nat Commun. 2025 Jul 26;16(1):6892. doi: 10.1038/s41467-025-62105-1. Nat Commun. 2025. PMID: 40715079 Free PMC article.
-
A realistic phantom dataset for benchmarking cryo-ET data annotation.Nat Methods. 2025 Aug 26. doi: 10.1038/s41592-025-02800-5. Online ahead of print. Nat Methods. 2025. PMID: 40859020
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials