Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar:292:139166.
doi: 10.1016/j.ijbiomac.2024.139166. Epub 2024 Dec 30.

Mongolian medicine Sugemule-7 decoction prevents osteoporosis via Erk1/2 and p38 MAPK signaling pathways according to network pharmacology analysis

Affiliations

Mongolian medicine Sugemule-7 decoction prevents osteoporosis via Erk1/2 and p38 MAPK signaling pathways according to network pharmacology analysis

Qijin Wu et al. Int J Biol Macromol. 2025 Mar.

Abstract

Osteoporosis (OP) is a significant global public health concern that requires the development of safe and effective drugs for prevention and treatment. Sugemule-7 (SGML-7) decoction, a traditional Mongolian herbal prescription, has long been used for treating OP, but its components and mechanisms of action remain unclear. The study identified the main compounds of SGML-7 using UHPLC-Q Exactive MS and explored the multi-target mechanisms of SGML-7 in OP through network pharmacology and molecular docking. A retinoic acid (RA)-induced mouse OP model was utilized to confirm the therapeutic effects and potential mechanism of SGML-7. Additionally, mouse pre-osteoblastic (MC3T3-E1) cells treated with SGML-7 medicated serum were employed to delve deeper into the molecular mechanisms. The UHPLC-Q Exactive MS analysis, network pharmacology, and molecular docking suggested that the synergistic effect of multiple active compounds could be the main contributor to SGML-7 for its anti-OP activities. Moreover, MAPK1, JUN, ESR1, TP53, AKT1, NCOA1, FOS, and NR3C1 were identified as potential key targets, and the MAPK signaling pathway was among the signaling pathways possibly involved in the anti-OP activities of SGML-7. Consistent with these findings, experimental studies confirmed that SGML-7 prevented bone loss, enhanced bone quality in OP mice, and promoted osteoblastic activity and bone formation in MC3T3-E1 cells by modulating MAPK-associated targets. Taken together, SGML-7 shows promise as an effective and appealing anti-OP drug candidate.

Keywords: MAPK signaling pathway; Osteoporosis; SGML-7.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

Substances

LinkOut - more resources