Biophysical and Structural Features of αβT-Cell Receptor Mechanosensing: A Paradigmatic Shift in Understanding T-Cell Activation
- PMID: 39745432
- PMCID: PMC11744257
- DOI: 10.1111/imr.13432
Biophysical and Structural Features of αβT-Cell Receptor Mechanosensing: A Paradigmatic Shift in Understanding T-Cell Activation
Abstract
αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination. Under load, the αβTCR undergoes reversible structural transitions involving partial unfolding of its clonotypic immunoglobulin-like (Ig) domains and coupled rearrangements of associated CD3 subunits and structural elements. We postulate that transitions provide critical energy to initiate the signaling cascade via induction of αβTCR quaternary structural rearrangements, associated membrane perturbations, exposure of CD3 ITAMs to phosphorylation by non-receptor tyrosine kinases, and phase separation of signaling molecules. Understanding force-mediated signaling by the αβTCR clarifies long-standing questions regarding αβTCR antigen recognition, specificity and affinity, providing a basis for continued investigation. Future directions include examining atomistic mechanisms of αβTCR signal initiation, performance quality, tissue compliance adaptability, and T-cell memory fate. The mechanotransduction paradigm will foster improved rational design of T-cell based vaccines, CAR-Ts, and adoptive therapies.
Keywords: T cell; T‐cell receptor (TCR); cell signaling; mechanosensing; molecular dynamics (MD); optical tweezers (OT); preTCR; single molecule (SM).
© 2024 The Author(s). Immunological Reviews published by John Wiley & Sons Ltd.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures













Similar articles
-
Molecular design of the γδT cell receptor ectodomain encodes biologically fit ligand recognition in the absence of mechanosensing.Proc Natl Acad Sci U S A. 2021 Jun 29;118(26):e2023050118. doi: 10.1073/pnas.2023050118. Proc Natl Acad Sci U S A. 2021. PMID: 34172580 Free PMC article.
-
NMR: an essential structural tool for integrative studies of T cell development, pMHC ligand recognition and TCR mechanobiology.J Biomol NMR. 2019 Jul;73(6-7):319-332. doi: 10.1007/s10858-019-00234-8. Epub 2019 Feb 27. J Biomol NMR. 2019. PMID: 30815789 Free PMC article.
-
Structural Features of the αβTCR Mechanotransduction Apparatus That Promote pMHC Discrimination.Front Immunol. 2015 Sep 3;6:441. doi: 10.3389/fimmu.2015.00441. eCollection 2015. Front Immunol. 2015. PMID: 26388869 Free PMC article. Review.
-
The αβTCR mechanosensor exploits dynamic ectodomain allostery to optimize its ligand recognition site.Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21336-21345. doi: 10.1073/pnas.2005899117. Epub 2020 Aug 13. Proc Natl Acad Sci U S A. 2020. PMID: 32796106 Free PMC article.
-
The structural basis of αβ T-lineage immune recognition: TCR docking topologies, mechanotransduction, and co-receptor function.Immunol Rev. 2012 Nov;250(1):102-19. doi: 10.1111/j.1600-065X.2012.01161.x. Immunol Rev. 2012. PMID: 23046125 Free PMC article. Review.
Cited by
-
The Structural Biology of T-Cell Antigen Detection at Close Contacts.Immunol Rev. 2025 May;331(1):e70014. doi: 10.1111/imr.70014. Immunol Rev. 2025. PMID: 40181535 Free PMC article. Review.
-
Liquid-liquid phase separation: an emerging perspective on the tumorigenesis, progression, and treatment of tumors.Front Immunol. 2025 Jun 26;16:1604015. doi: 10.3389/fimmu.2025.1604015. eCollection 2025. Front Immunol. 2025. PMID: 40642070 Free PMC article. Review.
References
-
- Reinherz E. L., Hussey R. E., and Schlossman S. F., “A Monoclonal Antibody Blocking Human T Cell Function,” European Journal of Immunology 10 (1980): 758–762. - PubMed
-
- Allison J. P., McIntyre B. W., and Bloch D., “Tumor‐Specific Antigen of Murine T‐Lymphoma Defined With Monoclonal Antibody,” Journal of Immunology 129 (1982): 2293–2300. - PubMed
-
- Meuer S. C., Acuto O., Hussey R. E., et al., “Evidence for the T3‐Associated 90K Heterodimer as the T‐Cell Antigen Receptor,” Nature 303 (1983): 808–810. - PubMed
-
- Hedrick S. M., Cohen D. I., Nielsen E. A., and Davis M. M., “Isolation of cDNA Clones Encoding T Cell‐Specific Membrane‐Associated Proteins,” Nature 308 (1984): 149–153. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources