Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan 13;64(1):151-157.
doi: 10.1021/acs.inorgchem.4c04397. Epub 2025 Jan 2.

Copper and Silver Trispyrazolylborate-Phosphinoazide Complexes: Synthesis, Characterization, and Nitrene Generation

Affiliations

Copper and Silver Trispyrazolylborate-Phosphinoazide Complexes: Synthesis, Characterization, and Nitrene Generation

Manuel R Rodríguez et al. Inorg Chem. .

Abstract

Phosphinoazide complexes of the composition TpBr3M-L (M = Cu, Ag, and L = 2-azido-1,3-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazaphosphole) have been synthesized and structurally characterized. Their thermal decomposition led to cyclodiphosphazenes as a result of the metal-mediated coupling of two nitrene units in a process that takes place in both a stoichiometric and catalytic manner. Experimental data have allowed proposing a mechanistic pathway for this new transformation.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. (a) Representative Examples of Detected or Isolated Copper-Nitrene Species Relevant to C–N Bond Formation; (b) Phosphinonitrenes Described by Bertrand and Its Coordination to Copper and Silver Centers
Scheme 2
Scheme 2. Synthesis of TpBr3 M[P(N3)(DDD)] Adducts
Figure 1
Figure 1
ORTEP diagram of complexes 2 and 3. Hydrogen atoms are omitted.
Scheme 3
Scheme 3. Thermolysis of Complex 2 and X-ray Structure of 4
Hydrogen atoms are omitted for clarity.
Figure 2
Figure 2
Variable-temperature 31P NMR studies for complex 3.
Figure 3
Figure 3
Decomposition of phosphinoazide (1), copper- (2), and silver complexes (3) (toluene-d8, 100 °C).
Scheme 4
Scheme 4. Thermolysis of Complex 3 and the ORTEP Diagram of Complex 6, Showing the Cation on the Left and the Anion on the Right
Hydrogen atoms are omitted for clarity.
Figure 4
Figure 4
Thermolysis of phosphinoazide (1), in the presence of variable concentrations of TpBr3Cu(NCMe) (toluene-d8, 80 °C).
Figure 5
Figure 5
Correlation of kobs with [TpBr3Cu(NCMe)].
Scheme 5
Scheme 5. Proposed Mechanism for the Formation of 4 by TpBr3Cu(NCMe)

Similar articles

References

    1. Dequirez G.; Pons V.; Dauban P. Nitrene Chemistry in Organic Synthesis: Still in Its Infancy?. Angew. Chem., Int. Ed. 2012, 51, 7384–7395. 10.1002/anie.201201945. - DOI - PubMed
    2. Davies H. M. L.; Manning J. R. Catalytic C–H Functionalization by Metal Carbenoid and Nitrenoid Insertion. Nature 2008, 451, 417–424. 10.1038/nature06485. - DOI - PMC - PubMed
    1. Liu Y.; Shing K. P.; Lo V. K.-Y.; Che C.-M. Iron- and Ruthenium-Catalyzed C–N Bond Formation Reactions. Reactive Metal Imido/Nitrene Intermediates. ACS Catal. 2023, 13, 1103–1124. 10.1021/acscatal.2c04830. - DOI
    2. Reith S.; Demeshko S.; Battistella B.; Reckziegel A.; Schneider C.; Stoy A.; Lichtenberg C.; Meyer F.; Munz D.; Werncke C. G. Between imide, imidyl and nitrene–an imido iron complex in two oxidation states. Chem. Sci. 2022, 13, 7907–7913. 10.1039/D2SC01088G. - DOI - PMC - PubMed
    3. Grunwald A.; Anjana S. S.; Munz D. Terminal Imido Complexes of the Groups 9–11: Electronic Structure and Developments in the Last Decade. Eur. J. Inorg. Chem. 2021, 2021, 4147–4166. 10.1002/ejic.202100410. - DOI
    4. Goswami M.; Lyaskovskyy V.; Domingos S. R.; Buma W. J.; Woutersen S.; Troeppner O.; Ivanović-Burmazović I.; Lu H.; Cui X.; Zhang X. P.; Reijerse E. J.; DeBeer S.; van Schooneveld M. M.; Pfaff F. F.; Ray K.; de Bruin B. Characterization of Porphyrin-Co(III)-‘Nitrene Radical’ Species Relevant in Catalytic Nitrene Transfer Reactions. J. Am. Chem. Soc. 2015, 137, 5468–5479. 10.1021/jacs.5b01197. - DOI - PMC - PubMed
    5. Gouré E.; Avenier F.; Dubourdeaux P.; Sénèque O.; Albriex F.; Lebrun C.; Clémancey M.; Maldivi P.; Latour J.-M. A Diiron(III,IV) Imido Species Very Active in Nitrene-Transfer Reactions. Angew. Chem., Int. Ed. 2014, 53, 1580–1584. 10.1002/anie.201307429. - DOI - PubMed
    6. Ray K.; Heims F.; Pfaff F. F. Terminal Oxo and Imido Transition-Metal Complexes of Groups 9–11. Eur. J. Inorg. Chem. 2013, 2013, 3784–3807. 10.1002/ejic.201300223. - DOI
    7. Takaoka A.; Moret M.-E.; Peters J. C. A Ru(I) Metalloradical That Catalyzes Nitrene Coupling to Azoarenes from Arylazides. J. Am. Chem. Soc. 2012, 134, 6695–6706. 10.1021/ja211603f. - DOI - PubMed
    8. King E. R.; Hennessy E. T.; Betley T. A. Catalytic C-H bond amination from high-spin iron imido complexes. J. Am. Chem. Soc. 2011, 133, 4917–4923. 10.1021/ja110066j. - DOI - PubMed
    9. Badiei Y. M.; Krishnaswamy A.; Melzer M. M.; Warren T. H. Transient Terminal Cu–Nitrene Intermediates from Discrete Dicopper Nitrenes. J. Am. Chem. Soc. 2006, 128, 15056–15057. 10.1021/ja065299l. - DOI - PubMed
    10. Shay D. T.; Yap G. P. A.; Zakharov L. N.; Rheingold A. L.; Theopold K. H. Intramolecular C–H Activation by an Open-Shell Cobalt(III) Imido Complex. Angew. Chem., Int. Ed. 2005, 44, 1508–1510. 10.1002/anie.200462529. - DOI - PubMed
    1. Selected examples of copper-nitrene complexes:

    2. Carsch K. M.; North S. C.; DiMucci I. M.; Illescu A.; Vojácková P.; Khazanov T.; Zheng S.-L.; Cundari T. R.; Lancaster K. M.; Betley T. A. Electronic Structures and Reactivity Profiles of Aryl Nitrenoid-Bridged Dicopper Complexes. J. Am. Chem. Sci. 2020, 142, 2264–2276. 10.1021/jacs.9b09616. - DOI - PMC - PubMed
    3. Carsch K. M.; Lukens J. T.; DiMucci I. M.; Iovan D. A.; Zheng S.-L.; Lancaster K. M.; Betley T. A. Electronic Structures and Reactivity Profiles of Aryl Nitrenoid-Bridged Dicopper Complexes. J. Am. Chem. Soc. 2020, 142, 2264–2276. 10.1021/jacs.9b09616. - DOI - PMC - PubMed
    4. Carsch K. M.; DiMucci I. M.; Iovan D. A.; Li A.; Zheng S.-L.; Titus C. J.; Lee S. J.; Irwin K. D.; Nordlund D.; Lancaster K. M.; Betley T. A. Synthesis of a copper-supported triplet nitrene complex pertinent to copper-catalyzed amination. Science 2019, 365, 1138–1143. 10.1126/science.aax4423. - DOI - PMC - PubMed
    5. Moegling J.; Hoffmann A.; Thomas F.; Orth N.; Liebhäuser P.; Herber U.; Rampmaier R.; Stanek J.; Fink G.; Ivanovic-Burmazovic I.; Herres-Pawlis S. Designed To React: Terminal Copper Nitrenes and Their Application in Catalytic C–H Aminations. Angew. Chem., Int. Ed. 2018, 57, 9154–9159. 10.1002/anie.201713171. - DOI - PubMed
    6. Corona T.; Ribas L.; Rovira M.; Farquhar E. R.; Ribas X.; Ray K.; Company A. Characterization and Reactivity Studies of a Terminal Copper–Nitrene Species. Angew. Chem., Int. Ed. 2016, 55, 14005–14008. 10.1002/anie.201607238. - DOI - PMC - PubMed
    7. Kundu S.; Miceli E.; Farquhar E.; Pfaff F. F.; Kuhlmann U.; Hildebrandt P.; Braun B.; Greco C.; Ray K. Lewis Acid Trapping of an Elusive Copper–Tosylnitrene Intermediate Using Scandium Triflate. J. Am. Chem. Soc. 2012, 134, 14710–14713. 10.1021/ja306674h. - DOI - PMC - PubMed
    1. Sicard G.; Baceiredo A.; Bertrand G.; Majoral J.-P. First Evidence for an Intermediate Nitrilo-λ5-phosphane. Angew. Chem., Int. Ed. Engl. 1984, 23, 459–460. 10.1002/anie.198404591. - DOI
    1. Baceiredo A.; Bertrand G.; Majoral J. P.; Sicard G.; Jaud J.; Galy J. Synthesis and structure of the first cyclodiphosphazene. Dimerization of a phosphonitrile. J. Am. Chem. Soc. 1984, 106, 6088–6089. 10.1021/ja00332a061. - DOI

LinkOut - more resources