Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025;69(2):161-170.
doi: 10.1159/000543344. Epub 2025 Jan 2.

Artificial Intelligence and Whole Slide Imaging Assist in Thyroid Indeterminate Cytology: A Systematic Review

Affiliations
Free article

Artificial Intelligence and Whole Slide Imaging Assist in Thyroid Indeterminate Cytology: A Systematic Review

Olia Poursina et al. Acta Cytol. 2025.
Free article

Abstract

Introduction: Thyroid cytopathology, particularly in cases of atypia of undetermined significance/follicular lesions of undetermined significance (AUS/FLUS), suffers from suboptimal sensitivity and specificity challenges. Recent advancements in digital pathology and artificial intelligence (AI) hold promise for enhancing diagnostic accuracy. This systematic review included studies that focused on diagnostic accuracy in AUS/FLUS cases using AI, whole slide imaging (WSI), or both.

Methods: Of the 176 studies from 2000 to 2023, 13 met the inclusion criteria. The datasets range from 145 to 964 WSIs, with an overall number of 494 AUS cases ranging from eight to 254. Five studies used convolutional neural networks (CNNs), and two used artificial neural networks (ANNs). The preparation methods included Romanowsky-stained smears either alone or combined with Papanicolaou-stained or H&E and liquid-based cytology (ThinPrep). The scanner models that were used for scanning the slides varied, including Leica/Aperio, Alyuda Neurointelligence Cupertino, and PANNORAMIC™ Desk Scanner. Classifiers used include Feedforward Neural Networks (FFNNs), Two-Layer Feedforward Neural Networks (2L-FFNNs), Classifier Machine Learning Algorithm (MLA), Visual Geometry Group 11 (VGG11), Gradient Boosting Trees (GBT), Extra Trees Classifier (ETC), YOLOv4, EfficientNetV2-L, Back-Propagation Multi-Layer Perceptron (BP MLP), and MobileNetV2.

Results: The available studies have shown promising results in differentiating between thyroid lesions, including AUS/FLUS. AI can be especially effective in removing sources of errors such as subjective assessment, variation in staining, and algorithms. CNN has been successful in processing WSI data and identifying diagnostic features with minimal human supervision. ANNs excelled in integrating structured clinical data with image-derived features, particularly when paired with WSI, enhancing diagnostic accuracy for indeterminate thyroid lesions.

Conclusion: A combined approach using both CNN and ANN can take advantage of their strengths. While AI and WSI integration shows promise in improving diagnostic accuracy and reducing uncertainty in indeterminate thyroid cytology, challenges such as the lack of standardization need to be addressed.

Keywords: Artificial intelligence; Artificial neural network; Atypia of undetermined significance/follicular lesions of undetermined significance; Covolutional neural network; Indeterminate cytology; Thyroid cytology; Whole slide imaging.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources