Global niche partitioning of purine and pyrimidine cross-feeding among ocean microbes
- PMID: 39752493
- PMCID: PMC11698098
- DOI: 10.1126/sciadv.adp1949
Global niche partitioning of purine and pyrimidine cross-feeding among ocean microbes
Abstract
Cross-feeding involves microbes consuming exudates of other surrounding microbes, mediating elemental cycling. Characterizing the diversity of cross-feeding pathways in ocean microbes illuminates evolutionary forces driving self-organization of ocean ecosystems. Here, we uncover a purine and pyrimidine cross-feeding network in globally abundant groups. The cyanobacterium Prochlorococcus exudes both compound classes, which metabolic reconstructions suggest follows synchronous daily genome replication. Co-occurring heterotrophs differentiate into purine- and pyrimidine-using generalists or specialists that use compounds for different purposes. The most abundant heterotroph, SAR11, is a specialist that uses purines as sources of energy, carbon, and/or nitrogen, with subgroups differentiating along ocean-scale gradients in the supply of energy and nitrogen, in turn producing putative cryptic nitrogen cycles that link many microbes. Last, in an SAR11 subgroup that dominates where Prochlorococcus is abundant, adenine additions to cultures inhibit DNA synthesis, poising cells for replication. We argue that this subgroup uses inferred daily adenine pulses from Prochlorococcus to synchronize to the daily photosynthate supply from surrounding phytoplankton.
Figures









Similar articles
-
Prochlorococcus Exudate Stimulates Heterotrophic Bacterial Competition with Rival Phytoplankton for Available Nitrogen.mBio. 2022 Feb 22;13(1):e0257121. doi: 10.1128/mbio.02571-21. Epub 2022 Jan 11. mBio. 2022. PMID: 35012332 Free PMC article.
-
A Parasitic Arsenic Cycle That Shuttles Energy from Phytoplankton to Heterotrophic Bacterioplankton.mBio. 2019 Mar 19;10(2):e00246-19. doi: 10.1128/mBio.00246-19. mBio. 2019. PMID: 30890605 Free PMC article.
-
Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean's surface.PLoS One. 2011 Feb 3;6(2):e16805. doi: 10.1371/journal.pone.0016805. PLoS One. 2011. PMID: 21304826 Free PMC article.
-
Adaptive mechanisms of nitrogen and carbon assimilatory pathways in the marine cyanobacteria Prochlorococcus.Res Microbiol. 2004 Dec;155(10):795-802. doi: 10.1016/j.resmic.2004.06.009. Res Microbiol. 2004. PMID: 15567272 Review.
-
Cross-protection from hydrogen peroxide by helper microbes: the impacts on the cyanobacterium Prochlorococcus and other beneficiaries in marine communities.Environ Microbiol Rep. 2018 Aug;10(4):399-411. doi: 10.1111/1758-2229.12625. Epub 2018 Feb 23. Environ Microbiol Rep. 2018. PMID: 29411546 Review.
References
-
- Pomeroy L. R., The ocean’s food web, a changing paradigm. Bioscience 24, 499–504 (1974).
-
- Azam F., Fenchel T., Field J. G., Gray J. S., Meyer-Reil L. A., Thingstad F., The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).
-
- Moran M. A., Kujawinski E. B., Schroer W. F., Amin S. A., Bates N. R., Bertrand E. M., Braakman R., Brown C. T., Covert M. W., Doney S. C., Dyhrman S. T., Edison A. S., Eren A. M., Levine N. M., Li L., Ross A. C., Saito M. A., Santoro A. E., Segrè D., Shade A., Sullivan M. B., Vardi A., Microbial metabolites in the marine carbon cycle. Nat. Microbiol. 7, 508–523 (2022). - PubMed
-
- Field C. B., Behrenfeld M. J., Randerson J. T., Falkowski P., Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281, 237–240 (1998). - PubMed
-
- P. G. Falkowski, J. A. Raven, Aquatic Photosynthesis (Princeton Univ. Press, 2013).
MeSH terms
Substances
LinkOut - more resources
Full Text Sources