Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2025 Jan;57(1):80-87.
doi: 10.1038/s41588-024-02031-y. Epub 2025 Jan 3.

Refining breast cancer genetic risk and biology through multi-ancestry fine-mapping analyses of 192 risk regions

Guochong Jia  1 Zhishan Chen  1 Jie Ping  1 Qiuyin Cai  1 Ran Tao  2 Chao Li  1 Joshua A Bauer  3 Yuhan Xie  4 Stefan Ambs  5 Mollie E Barnard  6 Yu Chen  7 Ji-Yeob Choi  8   9 Yu-Tang Gao  10 Montserrat Garcia-Closas  11 Jian Gu  12 Jennifer J Hu  13 Motoki Iwasaki  14 Esther M John  15 Sun-Seog Kweon  16   17 Christopher I Li  18 Koichi Matsuda  19 Keitaro Matsuo  20   21 Katherine L Nathanson  22   23 Barbara Nemesure  24 Olufunmilayo I Olopade  25 Tuya Pal  26 Sue K Park  9   27   28 Boyoung Park  29 Michael F Press  30 Maureen Sanderson  31 Dale P Sandler  32 Chen-Yang Shen  33   34 Melissa A Troester  35 Song Yao  36 Ying Zheng  37 Thomas Ahearn  11 Abenaa M Brewster  38 Adeyinka Falusi  39 Anselm J M Hennis  24   40 Hidemi Ito  41   42 Michiaki Kubo  43 Eun-Sook Lee  44   45 Timothy Makumbi  46 Paul Ndom  47 Dong-Young Noh  48   49 Katie M O'Brien  32 Oladosu Ojengbede  50 Andrew F Olshan  35 Min-Ho Park  51 Sonya Reid  52 Taiki Yamaji  14 Gary Zirpoli  6 Ebonee N Butler  35 Maosheng Huang  12 Siew-Kee Low  43 John Obafunwa  53 Clarice R Weinberg  54 Haoyu Zhang  11 Hongyu Zhao  4 Michelle L Cote  55   56 Christine B Ambrosone  36 Dezheng Huo  57 Bingshan Li  58 Daehee Kang  8   9 Julie R Palmer  6 Xiao-Ou Shu  1 Christopher A Haiman  59 Xingyi Guo  1 Jirong Long  1 Wei Zheng  60
Affiliations
Observational Study

Refining breast cancer genetic risk and biology through multi-ancestry fine-mapping analyses of 192 risk regions

Guochong Jia et al. Nat Genet. 2025 Jan.

Abstract

Genome-wide association studies have identified approximately 200 genetic risk loci for breast cancer, but the causal variants and target genes are mostly unknown. We sought to fine-map all known breast cancer risk loci using genome-wide association study data from 172,737 female breast cancer cases and 242,009 controls of African, Asian and European ancestry. We identified 332 independent association signals for breast cancer risk, including 131 signals not reported previously, and for 50 of them, we narrowed the credible causal variants down to a single variant. Analyses integrating functional genomics data identified 195 putative susceptibility genes, enriched in PI3K/AKT, TNF/NF-κB, p53 and Wnt/β-catenin pathways. Single-cell RNA sequencing or in vitro experiment data provided additional functional evidence for 105 genes. Our study uncovered large numbers of association signals and candidate susceptibility genes for breast cancer, uncovered breast cancer genetics and biology, and supported the value of including multi-ancestry data in fine-mapping analyses.

PubMed Disclaimer

Conflict of interest statement

Competing interests: O.I.O is co-founder at CancerIQ, serves as Scientific Advisor at Tempus and is on the Board of 54gene. The other authors declare no competing interests.

References

    1. Sung H et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 71, 209–249 (2021). - PubMed
    1. Michailidou K et al. Association analysis identifies 65 new breast cancer risk loci. Nature 551, 92–94 (2017). - PMC - PubMed
    1. Zhang H et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nature Genetics 52, 572–581 (2020). - PMC - PubMed
    1. Shu X et al. Identification of novel breast cancer susceptibility loci in meta-analyses conducted among Asian and European descendants. Nature Communications 11, 1217 (2020). - PMC - PubMed
    1. Jia G et al. Genome- and transcriptome-wide association studies of 386,000 Asian and European-ancestry women provide new insights into breast cancer genetics. The American Journal of Human Genetics 109, 2185–2195 (2022). - PMC - PubMed

Methods-only references

    1. Jia G et al. Genome-wide association analyses of breast cancer in women of African ancestry identify new susceptibility loci and improve risk prediction. Nature Genetics 56, 819–826 (2024). - PMC - PubMed
    1. Zheng W et al. Common genetic determinants of breast-cancer risk in East Asian women: a collaborative study of 23 637 breast cancer cases and 25 579 controls. Human Molecular Genetics 22, 2539–2550 (2013). - PMC - PubMed
    1. Ishigaki K et al. Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nature Genetics 52, 669–679 (2020). - PMC - PubMed
    1. Zheng W et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nature Genetics 41, 324–328 (2009). - PMC - PubMed
    1. Cai Q et al. Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1. Nature Genetics 46, 886–890 (2014). - PMC - PubMed

Publication types