Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Mar 17;12(6):1689-1710.
doi: 10.1039/d4mh01001a.

MAX phase coatings: synthesis, protective performance, and functional characteristics

Affiliations
Review

MAX phase coatings: synthesis, protective performance, and functional characteristics

Guanshui Ma et al. Mater Horiz. .

Abstract

Mn+1AXn (MAX) phases are a novel class of materials with a closely packed hexagonal structure that bridge the gap between metals and ceramics, garnering tremendous research interest worldwide in recent years. Benefiting from their unique layered structure and mixed covalent-ionic-metallic bonding characteristics, MAX phase coatings possess excellent oxidation resistance, and exceptional electrical and thermal conductivities, making them highly promising for applications in advanced nuclear materials, battery plate protection materials, and aero-engine functional materials. This review aims to provide a comprehensive understanding of MAX phase coatings. It presents an overview of their compositions and microstructure, highlighting well-established structures like 211, 312, and 413. Furthermore, it delves into the various synthesis methods employed in fabricating MAX phase coatings, including physical vapor deposition, chemical vapor deposition, spraying methods, and laser cladding, among others. The potential applications of MAX phase coatings, high-temperature oxidation resistance, mechanical protection, salt spray corrosion resistance, etc., are also investigated. Finally, this review discusses the future potential of MAX phase coatings and proposes areas for further research and improvement. The primary goal is to offer theoretical guidance and innovative ideas for the synthesis and development of superior MAX phase coatings for commercial applications.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources