Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Feb;77(2):303-14.
doi: 10.1016/0041-008x(85)90330-8.

Cardiovascular dysfunction and hypersensitivity to sodium pentobarbital induced by chronic barium chloride ingestion

Cardiovascular dysfunction and hypersensitivity to sodium pentobarbital induced by chronic barium chloride ingestion

S J Kopp et al. Toxicol Appl Pharmacol. 1985 Feb.

Abstract

Barium-supplemented Long-Evans hooded rats were characterized by a persistent hypertension that was evident after 1 month of barium (100 micrograms/ml mineral fortified water) treatment. Analysis of in vivo myocardial excitability, contractility, and metabolic characteristics at 16 months revealed other significant barium-induced disturbances within the cardiovascular system. The most distinctive aspect of the barium effect was a demonstrated hypersensitivity of the cardiovascular system to sodium pentobarbital. Under barbiturate anesthesia, virtually all of the myocardial contractile indices were depressed significantly in barium-exposed rats relative to the corresponding control-fed rats. The lack of a similar response to ketamine and xylazine anesthesia revealed that the cardiovascular actions of sodium pentobarbital in barium-treated rats were linked specifically to this anesthetic, and were not representative of a generalized anesthetic response. Other myocardial pathophysiologic and metabolic changes induced by barium were manifest, irrespective of the anesthetic employed. The contractile element shortening velocity of the cardiac muscle fibers was significantly slower in both groups of barium-treated rats relative to the control groups, irrespective of the anesthetic regimen. Similarly, significant disturbances in myocardial energy metabolism were detected in the barium-exposed rats which were consistent with the reduced contractile element shortening velocity. In addition, the excitability of the cardiac conduction system was depressed preferentially in the atrioventricular nodal region of hearts from barium-exposed rats. Overall, the altered cardiac contractility and excitability characteristics, the myocardial metabolic disturbances, and the hypersensitivity of the cardiovascular system to sodium pentobarbital suggest the existence of a heretofore undescribed cardiomyopathic disorder induced by chronic barium exposure. These experimental findings represent the first indication that life-long barium ingestion may have significant adverse effects on the mammalian cardiovascular system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources