Enhancing Intelligent Shoes with Gait Analysis: A Review on the Spatiotemporal Estimation Techniques
- PMID: 39771619
- PMCID: PMC11678955
- DOI: 10.3390/s24247880
Enhancing Intelligent Shoes with Gait Analysis: A Review on the Spatiotemporal Estimation Techniques
Abstract
The continuous, automated monitoring of sensor-based data for walking capacity and mobility has expanded gait analysis applications beyond controlled laboratory settings to real-world, everyday environments facilitated by the development of portable, cost-efficient wearable sensors. In particular, the integration of Inertial Measurement Units (IMUs) into smart shoes has proven effective for capturing detailed foot movements and spatiotemporal gait characteristics. While IMUs enable accurate foot trajectory estimation through the double integration of acceleration data, challenges such as drift errors necessitate robust correction techniques to ensure reliable performance. This review analyzes current literature on shoe-based systems utilizing IMUs to estimate spatiotemporal gait parameters and foot trajectory characteristics, including foot-ground clearance. We explore the challenges and advancements in achieving accurate 3D foot trajectory estimation using IMUs in smart shoes and the application of advanced techniques like zero-velocity updates and error correction methods. These developments present significant opportunities for achieving reliable and efficient real-time gait assessment in everyday environments.
Keywords: fall prevention; foot clearance; foot movement tracking; foot trajectory estimation; gait analysis; inertial measurement unit; portable; smart shoes; spatiotemporal gait parameters; wearable sensors.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures






Similar articles
-
Does the Position of Foot-Mounted IMU Sensors Influence the Accuracy of Spatio-Temporal Parameters in Endurance Running?Sensors (Basel). 2020 Oct 7;20(19):5705. doi: 10.3390/s20195705. Sensors (Basel). 2020. PMID: 33036477 Free PMC article.
-
Comparison of Different Algorithms for Calculating Velocity and Stride Length in Running Using Inertial Measurement Units.Sensors (Basel). 2018 Nov 30;18(12):4194. doi: 10.3390/s18124194. Sensors (Basel). 2018. PMID: 30513595 Free PMC article.
-
Smoother-Based 3-D Foot Trajectory Estimation Using Inertial Sensors.IEEE Trans Biomed Eng. 2019 Dec;66(12):3534-3542. doi: 10.1109/TBME.2019.2907322. Epub 2019 Mar 26. IEEE Trans Biomed Eng. 2019. PMID: 30932822
-
Shoe-Insole Technology for Injury Prevention in Walking.Sensors (Basel). 2018 May 8;18(5):1468. doi: 10.3390/s18051468. Sensors (Basel). 2018. PMID: 29738486 Free PMC article. Review.
-
A review of foot pose and trajectory estimation methods using inertial and auxiliary sensors for kinematic gait analysis.Biomed Tech (Berl). 2020 Jun 25:/j/bmte.ahead-of-print/bmt-2019-0163/bmt-2019-0163.xml. doi: 10.1515/bmt-2019-0163. Online ahead of print. Biomed Tech (Berl). 2020. PMID: 32589591 Review.
Cited by
-
Challenges in Combining EMG, Joint Moments, and GRF from Marker-Less Video-Based Motion Capture Systems.Bioengineering (Basel). 2025 Apr 27;12(5):461. doi: 10.3390/bioengineering12050461. Bioengineering (Basel). 2025. PMID: 40428080 Free PMC article. Review.
References
-
- Hegde N., Bries M., Sazonov E. A Comparative Review of Footwear-Based Wearable Systems. Electronics. 2016;5:48. doi: 10.3390/electronics5030048. - DOI
-
- Karaulova I.A., Hall P.M., Marshall A.D. Tracking people in three dimensions using a hierarchical model of dynamics. Image Vis. Comput. 2002;20:691–700. doi: 10.1016/S0262-8856(02)00059-8. - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources