Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan 17;90(2):1036-1043.
doi: 10.1021/acs.joc.4c02228. Epub 2025 Jan 8.

Combining Photochemical Oxyfunctionalization and Enzymatic Catalysis for the Synthesis of Chiral Pyrrolidines and Azepanes

Affiliations

Combining Photochemical Oxyfunctionalization and Enzymatic Catalysis for the Synthesis of Chiral Pyrrolidines and Azepanes

Maria Logotheti et al. J Org Chem. .

Abstract

Chiral heterocyclic alcohols and amines are frequently used building blocks in the synthesis of fine chemicals and pharmaceuticals. Herein, we report a one-pot photoenzymatic synthesis route for N-Boc-3-amino/hydroxy-pyrrolidine and N-Boc-4-amino/hydroxy-azepane with up to 90% conversions and >99% enantiomeric excess. The transformation combines a photochemical oxyfunctionalization favored for distal C-H positions with a stereoselective enzymatic transamination or carbonyl reduction step. Our study demonstrates a mild and operationally simple asymmetric synthesis workflow from easily available starting materials.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Examples of bioactive compounds containing a 3-amino/hydroxy-pyrrolidine or 4-amino/hydroxy-azepane moiety (highlighted in blue).
Figure 2
Figure 2
A. Examples of literature-reported biocatalytic syntheses of enantioenriched 3-aminopyrrolidines and 3-hydroxypyrrolidines. (i). Amine-transaminase (ATA)-catalyzed transamination or keto reductase (KRED)-catalyzed carbonyl reduction of N-protected-3-pyrrolidinone, (ii). ATA-mediated kinetic resolution of racemic N-Boc-3-aminopyrrolidine, (iii). Chemoenzymatic multipot preparation of chiral N-benzyl-3-aminopyrrolidine, with racemic resolution of N-protected-d,l-asparagine esters with proteases as the key step. B. Summarized reaction scheme of the one-pot photoenzymatic conversion of pyrrolidine or azepane into chiral N-Boc-protected 3-amino/hydroxypyrrolidines and 4-amino/hydroxyazepanes.

Similar articles

References

    1. Vitaku E.; Smith D. T.; Njardarson J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals: Miniperspective. J. Med. Chem. 2014, 57 (24), 10257–10274. 10.1021/jm501100b. - DOI - PubMed
    2. Kittakoop P.; Mahidol C.; Ruchirawat S. Alkaloids as Important Scaffolds in Therapeutic Drugs for the Treatments of Cancer, Tuberculosis, and Smoking Cessation. Curr. Top. Med. Chem. 2013, 14 (2), 239–252. 10.2174/1568026613666131216105049. - DOI - PubMed
    3. Roughley S. D.; Jordan A. M. The Medicinal Chemist’s Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates. J. Med. Chem. 2011, 54 (10), 3451–3479. 10.1021/jm200187y. - DOI - PubMed
    1. Wang S.; Zhang J.-X.; Zhang T.-Y.; Meng H.; Chen B.-H.; Shu W. Enantioselective Access to Chiral Aliphatic Amines and Alcohols via Ni-Catalyzed Hydroalkylations. Nat. Commun. 2021, 12 (1), 277110.1038/s41467-021-22983-7. - DOI - PMC - PubMed
    1. Zhang J.; Wei Y.; Zhou X.; Yang K.; Sun Y.. PARP1 inhibitor and application thereof. CN 117447449A, 2022.
    2. Freeman D. B.; Hopkins T. D.; Mikochik P. J.; Vacca J. P.; Gao H.; Naylor-Olsen A.; Rudra S.; Li H.; Pop M. S.; Villagomez R. A.; Lee C.; Li H.; Zhou M.; Saffran D. C.; Rioux N.; Hood T. R.; Day M. A. L.; McKeown M. R.; Lin C. Y.; Bischofberger N.; Trotter B. W. Discovery of KB-0742, a Potent, Selective, Orally Bioavailable Small Molecule Inhibitor of CDK9 for MYC-Dependent Cancers. J. Med. Chem. 2023, 66 (23), 15629–15647. 10.1021/acs.jmedchem.3c01233. - DOI - PMC - PubMed
    3. Petri G. L.; Raimondi M. V.; Spanò V.; Holl R.; Barraja P.; Montalbano A. Pyrrolidine in Drug Discovery: A Versatile Scaffold for Novel Biologically Active Compounds. Top. Curr. Chem. 2021, 379 (5), 3410.1007/s41061-021-00347-5. - DOI - PMC - PubMed
    4. Mikochik P.; Vacca J.; Freeman D.; Tasker A.. Compounds, Compositions, and Methods for Modulating Cdk9 Activity. CA 3118472 A1, 2020.
    5. McGrath N. A.; Brichacek M.; Njardarson J. T. A Graphical Journey of Innovative Organic Architectures That Have Improved Our Lives. J. Chem. Educ. 2010, 87 (12), 1348–1349. 10.1021/ed1003806. - DOI
    1. Hughes D. L. Patent Review of Manufacturing Routes to Fifth-Generation Cephalosporin Drugs. Part 2, Ceftaroline Fosamil and Ceftobiprole Medocaril. Org. Process Res. Dev. 2017, 21 (6), 800–815. 10.1021/acs.oprd.7b00143. - DOI
    1. Hoegenauer K.; Soldermann N.; Zécri F.; Strang R. S.; Graveleau N.; Wolf R. M.; Cooke N. G.; Smith A. B.; Hollingworth G. J.; Blanz J.; Gutmann S.; Rummel G.; Littlewood-Evans A.; Burkhart C. Discovery of CDZ173 (Leniolisib), Representing a Structurally Novel Class of PI3K Delta-Selective Inhibitors. ACS Med. Chem. Lett. 2017, 8 (9), 975–980. 10.1021/acsmedchemlett.7b00293. - DOI - PMC - PubMed

LinkOut - more resources