Hidden domain boundary dynamics toward crystalline perfection
- PMID: 39773030
- PMCID: PMC11745343
- DOI: 10.1073/pnas.2407772122
Hidden domain boundary dynamics toward crystalline perfection
Abstract
A central paradigm of nonequilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales on which nonequilibrium responses are ultimately maintained. Approaches that illuminate these processes in model systems may enable a more general understanding of other heterogeneous nonequilibrium phenomena, and potentially define ultimate speed and energy cost limits for information processing technologies. Here, we apply ultrafast single-shot X-ray photon correlation spectroscopy to resolve the nonequilibrium, heterogeneous, and irreversible mesoscale dynamics during a light-induced phase transition in a (PbTiO3)16/(SrTiO3)16 superlattice. Such ferroelectric superlattice systems are a useful platform to study phase transitions and topological dynamics due to their high degree of tunability. This provides an approach for capturing the nucleation of the light-induced phase, the formation of transient mesoscale defects at the boundaries of the nuclei, and the eventual annihilation of these defects, even in systems with complex polarization topologies. We identify a nonequilibrium correlation response spanning >10 orders of magnitude in timescales, with multistep behavior similar to the plateaus observed in supercooled liquids and glasses. We further show how the observed time-dependent long-time correlations can be understood in terms of stochastic and non-Markovian dynamics of domain walls, encoded in waiting-time distributions with power-law tails. This work defines possibilities for probing the nonequilibrium and correlated dynamics of disordered and heterogeneous media.
Keywords: X-ray photon correlation spectroscopy; domain walls; heterogeneous processes; non-equilibrium dynamics; phase transitions.
Conflict of interest statement
Competing interests statement:The authors declare no competing interest.
Figures




Similar articles
-
Adapting Safety Plans for Autistic Adults with Involvement from the Autism Community.Autism Adulthood. 2025 May 28;7(3):293-302. doi: 10.1089/aut.2023.0124. eCollection 2025 Jun. Autism Adulthood. 2025. PMID: 40539213
-
How lived experiences of illness trajectories, burdens of treatment, and social inequalities shape service user and caregiver participation in health and social care: a theory-informed qualitative evidence synthesis.Health Soc Care Deliv Res. 2025 Jun;13(24):1-120. doi: 10.3310/HGTQ8159. Health Soc Care Deliv Res. 2025. PMID: 40548558
-
The Black Book of Psychotropic Dosing and Monitoring.Psychopharmacol Bull. 2024 Jul 8;54(3):8-59. Psychopharmacol Bull. 2024. PMID: 38993656 Free PMC article. Review.
-
Education support services for improving school engagement and academic performance of children and adolescents with a chronic health condition.Cochrane Database Syst Rev. 2023 Feb 8;2(2):CD011538. doi: 10.1002/14651858.CD011538.pub2. Cochrane Database Syst Rev. 2023. PMID: 36752365 Free PMC article.
-
Stigma Management Strategies of Autistic Social Media Users.Autism Adulthood. 2025 May 28;7(3):273-282. doi: 10.1089/aut.2023.0095. eCollection 2025 Jun. Autism Adulthood. 2025. PMID: 40539215
References
-
- Zong A., et al. , Evidence for topological defects in a photoinduced phase transition. Nat. Phys. 15, 27–31 (2018).
-
- Büttner F., et al. , Observation of fluctuation-mediated picosecond nucleation of a topological phase. Nat. Mater. 20, 30–37 (2021). - PubMed
-
- Johnson A. S., et al. , Ultrafast X-ray imaging of the light-induced phase transition in VO2. Nat. Phys. 19, 215–220 (2022).
-
- Gasser U., Weeks E. R., Schofield A., Pusey P. N., Weitz D. A., Real-space imaging of nucleation and growth in colloidal crystallization. Science 292, 258–262 (2001). - PubMed
-
- Bray A. J., Theory of phase-ordering kinetics. Adv. Phys. 43, 357–459 (1994).
Grants and funding
LinkOut - more resources
Full Text Sources