Open-boundary molecular dynamics of ultrasound using supramolecular water models
- PMID: 39774894
- DOI: 10.1063/5.0238348
Open-boundary molecular dynamics of ultrasound using supramolecular water models
Abstract
Ultrasound can be used to manipulate protein function and activity, as well as for targeted drug delivery, making it a powerful diagnostic and therapeutic modality with wide applications in sonochemistry, nanotechnology, and engineering. However, a general particle-based approach to ultrasound modeling remains challenging due to the significant disparity between characteristic time scales governing ultrasound propagation. In this study, we use open-boundary molecular dynamics to simulate ultrasound waves in liquid water under ambient conditions by employing supramolecular water models, i.e., the Martini 3, dissipative particle dynamics, and many-body dissipative particle dynamics models. We demonstrate that our approach successfully reproduces the solution of the traveling wave equation and captures the velocity dispersion characteristic of high-frequency ultrasound waves.
© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkOut - more resources
Full Text Sources
