Aggregating multiple test results to improve medical decision-making
- PMID: 39775197
- PMCID: PMC11741652
- DOI: 10.1371/journal.pcbi.1012749
Aggregating multiple test results to improve medical decision-making
Erratum in
-
Correction: Aggregating multiple test results to improve medical decision-making.PLoS Comput Biol. 2025 Aug 4;21(8):e1013347. doi: 10.1371/journal.pcbi.1013347. eCollection 2025 Aug. PLoS Comput Biol. 2025. PMID: 40758619 Free PMC article.
Abstract
Gathering observational data for medical decision-making often involves uncertainties arising from both type I (false positive) and type II (false negative) errors. In this work, we develop a statistical model to study how medical decision-making can be improved by aggregating results from repeated diagnostic and screening tests. Our approach is relevant to not only clinical settings such as medical imaging, but also to public health, as highlighted by the need for rapid, cost-effective testing methods during the SARS-CoV-2 pandemic. Our model enables the development of testing protocols with an arbitrary number of tests, which can be customized to meet requirements for type I and type II errors. This allows us to adjust sensitivity and specificity according to application-specific needs. Additionally, we derive generalized Rogan-Gladen estimates of disease prevalence that account for an arbitrary number of tests with potentially different type I and type II errors. We also provide the corresponding uncertainty quantification.
Copyright: © 2025 Böttcher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures









Similar articles
-
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.
-
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3. Cochrane Database Syst Rev. 2022. PMID: 35866452 Free PMC article.
-
Measures implemented in the school setting to contain the COVID-19 pandemic.Cochrane Database Syst Rev. 2022 Jan 17;1(1):CD015029. doi: 10.1002/14651858.CD015029. Cochrane Database Syst Rev. 2022. Update in: Cochrane Database Syst Rev. 2024 May 2;5:CD015029. doi: 10.1002/14651858.CD015029.pub2. PMID: 35037252 Free PMC article. Updated.
-
Antibody tests for identification of current and past infection with SARS-CoV-2.Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD013652. doi: 10.1002/14651858.CD013652.pub2. Cochrane Database Syst Rev. 2022. PMID: 36394900 Free PMC article.
-
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.Cochrane Database Syst Rev. 2024 Dec 16;12(12):CD014780. doi: 10.1002/14651858.CD014780. Cochrane Database Syst Rev. 2024. PMID: 39679851 Free PMC article.
Cited by
-
Correction: Aggregating multiple test results to improve medical decision-making.PLoS Comput Biol. 2025 Aug 4;21(8):e1013347. doi: 10.1371/journal.pcbi.1013347. eCollection 2025 Aug. PLoS Comput Biol. 2025. PMID: 40758619 Free PMC article.