Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec 12;7(2):182-189.
doi: 10.1038/s41550-022-01846-1.

Contribution of Ryugu-like material to Earth's volatile inventory by Cu and Zn isotopic analysis

Marine Paquet  1 Frederic Moynier  1 Tetsuya Yokoyama  2 Wei Dai  1 Yan Hu  1 Yoshinari Abe  3 Jérôme Aléon  4 Conel M O'D Alexander  5 Sachiko Amari  6 Yuri Amelin  7 Ken-Ichi Bajo  8 Martin Bizzarro  1   9 Audrey Bouvier  10 Richard W Carlson  5 Marc Chaussidon  1 Byeon-Gak Choi  11 Nicolas Dauphas  12 Andrew M Davis  12 Tommaso Di Rocco  13 Wataru Fujiya  14 Ryota Fukai  15 Ikshu Gautam  2 Makiko K Haba  2 Yuki Hibiya  16 Hiroshi Hidaka  17 Hisashi Homma  18 Peter Hoppe  19 Gary R Huss  20 Kiyohiro Ichida  21 Tsuyoshi Iizuka  22 Trevor R Ireland  23 Akira Ishikawa  2 Motoo Ito  24 Shoichi Itoh  25 Noriyuki Kawasaki  8 Noriko T Kita  26 Kouki Kitajima  26 Thorsten Kleine  27 Shintaro Komatani  21 Alexander N Krot  20 Ming-Chang Liu  28 Yuki Masuda  2 Kevin D McKeegan  28 Mayu Morita  21 Kazuko Motomura  29 Izumi Nakai  29 Kazuhide Nagashima  20 David Nesvorný  30 Ann N Nguyen  31 Larry Nittler  5 Morihiko Onose  21 Andreas Pack  13 Changkun Park  32 Laurette Piani  33 Liping Qin  34 Sara S Russell  35 Naoya Sakamoto  36 Maria Schönbächler  37 Lauren Tafla  28 Haolan Tang  28 Kentaro Terada  38 Yasuko Terada  39 Tomohiro Usui  15 Sohei Wada  8 Meenakshi Wadhwa  40 Richard J Walker  41 Katsuyuki Yamashita  42 Qing-Zhu Yin  43 Shigekazu Yoneda  44 Edward D Young  28 Hiroharu Yui  45 Ai-Cheng Zhang  46 Tomoki Nakamura  47 Hiroshi Naraoka  48 Takaaki Noguchi  24 Ryuji Okazaki  48 Kanako Sakamoto  15 Hikaru Yabuta  49 Masanao Abe  15 Akiko Miyazaki  15 Aiko Nakato  15 Masahiro Nishimura  15 Tatsuaki Okada  15 Toru Yada  15 Kasumi Yogata  15 Satoru Nakazawa  15 Takanao Saiki  15 Satoshi Tanaka  15 Fuyuto Terui  50 Yuichi Tsuda  15 Sei-Ichiro Watanabe  17 Makoto Yoshikawa  15 Shogo Tachibana  51 Hisayoshi Yurimoto  8
Affiliations

Contribution of Ryugu-like material to Earth's volatile inventory by Cu and Zn isotopic analysis

Marine Paquet et al. Nat Astron. .

Abstract

Initial analyses showed that asteroid Ryugu's composition is close to CI (Ivuna-like) carbonaceous chondrites -the chemically most primitive meteorites, characterized by near-solar abundances for most elements. However, some isotopic signatures (e.g., Ti, Cr) overlap with other carbonaceous chondrite (CC) groups, so the details of the link between Ryugu and the CI chondrites are not fully clear yet. Here we show that Ryugu and CI chondrites have the same zinc and copper isotopic composition. As the various chondrite groups have very distinct Zn and Cu isotopic signatures, our results point at a common genetic heritage between Ryugu and CI chondrites, ruling out any affinity with other CC groups. Since Ryugu's pristine samples match the solar elemental composition for many elements, their Zn and Cu isotopic compositions likely represent the best estimates of the solar composition. Earth's mass-independent Zn isotopic composition is intermediate between Ryugu/CC and non-carbonaceous chondrites, suggesting a contribution of Ryugu-like material to Earth's budgets of Zn and other moderately volatile elements.

Keywords: CI chondrites; Cu isotopes; Hayabusa2; Ryugu; Zn isotopes; volatile elements.

PubMed Disclaimer

Conflict of interest statement

Competing Interests Statement The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1. Zinc and copper elemental and isotopic compositions for Ryugu and carbonaceous chondrites samples.
(a) δ66Zn vs Mg/Zn, (b) δ65Cu vs Mg/Cu and (c) Zn/Mg vs Cu/Mg that we measured for the Ryugu samples (diamonds) and carbonaceous chondrites (large circles with abbreviations: Or=Orgueil, Als=Alais, Tag=Tagish Lake, Tar=Tarda, Mur=Murchison, All=Allende). Small circles are from the literature [17–21] for Zn and Cu isotope compositions (and references therein for major and trace element compositions). The color identifies the type of chondrite as described in the legend. The purple star in panel c represents the CI chondrite composition from [1]. Data are presented as mean values with 2SD error bars, reported in Table 1.
Figure 2
Figure 2. δ66Zn vs δ65Cu for Ryugu samples and carbonaceous chondrites.
Literature data are from [17,19]. Same symbols as in Figure 1 for the samples analyzed in this study. Other chondrite groups from the literature are reported directly on the figure. Data are presented as mean values with 2SD error bars, reported in Table 1. For clarity, only the error bars of our measurements are displayed. Error bars for literature data are not shown.
Figure 3
Figure 3. δ66Zn (this study) vs ε54Cr [5,30,53–55] for Ryugu samples and carbonaceous chondrites.
Literature data are from [17,18,20] for Zn isotope compositions, and from [56] for Cr isotope compositions. The dark and light blue shaded areas correspond to the ε54Cr ranges for site A and site C, respectively, from [6]. Same symbols as in Figure 1 for the samples analyzed in this study. Other chondrite groups from the literature are reported directly on the figure. Data are presented as mean values with 2SD error bars, reported in Table 1.
Figure 4
Figure 4. Variations of ε66Zn among different groups of meteorites.
For comparison purposes, only Ryugu (diamond) and CI (purple circles) samples measured in this study are represented here. Literature data for carbonaceous chondrites ([28] (large symbols), [29] (small symbols)), ordinary chondrites [28,29], enstatite chondrites [28,29], NC and CC iron chondrites [29], ureilites [29] are shown with gray symbols. Bulk Silicate Earth: +0.015 ± 0.075 ‱, 2SE, n = 4 [28] and –0.07 ± 0.013 ‱, 2SE, n = 3 [29]). Data are presented as mean values with 2SE error bars, reported in Table 1.

Similar articles

  • Noble gases and nitrogen in samples of asteroid Ryugu record its volatile sources and recent surface evolution.
    Okazaki R, Marty B, Busemann H, Hashizume K, Gilmour JD, Meshik A, Yada T, Kitajima F, Broadley MW, Byrne D, Füri E, Riebe MEI, Krietsch D, Maden C, Ishida A, Clay P, Crowther SA, Fawcett L, Lawton T, Pravdivtseva O, Miura YN, Park J, Bajo KI, Takano Y, Yamada K, Kawagucci S, Matsui Y, Yamamoto M, Righter K, Sakai S, Iwata N, Shirai N, Sekimoto S, Inagaki M, Ebihara M, Yokochi R, Nishiizumi K, Nagao K, Lee JI, Kano A, Caffee MW, Uemura R, Nakamura T, Naraoka H, Noguchi T, Yabuta H, Yurimoto H, Tachibana S, Sawada H, Sakamoto K, Abe M, Arakawa M, Fujii A, Hayakawa M, Hirata N, Hirata N, Honda R, Honda C, Hosoda S, Iijima YI, Ikeda H, Ishiguro M, Ishihara Y, Iwata T, Kawahara K, Kikuchi S, Kitazato K, Matsumoto K, Matsuoka M, Michikami T, Mimasu Y, Miura A, Morota T, Nakazawa S, Namiki N, Noda H, Noguchi R, Ogawa N, Ogawa K, Okada T, Okamoto C, Ono G, Ozaki M, Saiki T, Sakatani N, Senshu H, Shimaki Y, Shirai K, Sugita S, Takei Y, Takeuchi H, Tanaka S, Tatsumi E, Terui F, Tsukizaki R, Wada K, Yamada M, Yamada T, Yamamoto Y, Yano H, Yokota Y, Yoshihara K, Yoshikawa M, Yoshikawa K, Furuya S, Hatakeda K, Hayashi T, Hitomi Y, Kumagai K, Miyazaki A, Nakato A, Nishimura M, Soejima H, Iwama… See abstract for full author list ➔ Okazaki R, et al. Science. 2023 Feb 24;379(6634):eabo0431. doi: 10.1126/science.abo0431. Epub 2023 Feb 24. Science. 2023. PMID: 36264828
  • Ryugu's nucleosynthetic heritage from the outskirts of the Solar System.
    Hopp T, Dauphas N, Abe Y, Aléon J, O'D Alexander CM, Amari S, Amelin Y, Bajo KI, Bizzarro M, Bouvier A, Carlson RW, Chaussidon M, Choi BG, Davis AM, Di Rocco T, Fujiya W, Fukai R, Gautam I, Haba MK, Hibiya Y, Hidaka H, Homma H, Hoppe P, Huss GR, Ichida K, Iizuka T, Ireland TR, Ishikawa A, Ito M, Itoh S, Kawasaki N, Kita NT, Kitajima K, Kleine T, Komatani S, Krot AN, Liu MC, Masuda Y, McKeegan KD, Morita M, Motomura K, Moynier F, Nakai I, Nagashima K, Nesvorný D, Nguyen A, Nittler L, Onose M, Pack A, Park C, Piani L, Qin L, Russell SS, Sakamoto N, Schönbächler M, Tafla L, Tang H, Terada K, Terada Y, Usui T, Wada S, Wadhwa M, Walker RJ, Yamashita K, Yin QZ, Yokoyama T, Yoneda S, Young ED, Yui H, Zhang AC, Nakamura T, Naraoka H, Noguchi T, Okazaki R, Sakamoto K, Yabuta H, Abe M, Miyazaki A, Nakato A, Nishimura M, Okada T, Yada T, Yogata K, Nakazawa S, Saiki T, Tanaka S, Terui F, Tsuda Y, Watanabe SI, Yoshikawa M, Tachibana S, Yurimoto H. Hopp T, et al. Sci Adv. 2022 Nov 18;8(46):eadd8141. doi: 10.1126/sciadv.add8141. Epub 2022 Nov 16. Sci Adv. 2022. PMID: 36264823 Free PMC article.
  • The Ni isotopic composition of Ryugu reveals a common accretion region for carbonaceous chondrites.
    Spitzer F, Kleine T, Burkhardt C, Hopp T, Yokoyama T, Abe Y, Aléon J, O'D Alexander CM, Amari S, Amelin Y, Bajo KI, Bizzarro M, Bouvier A, Carlson RW, Chaussidon M, Choi BG, Dauphas N, Davis AM, Di Rocco T, Fujiya W, Fukai R, Gautam I, Haba MK, Hibiya Y, Hidaka H, Homma H, Hoppe P, Huss GR, Ichida K, Iizuka T, Ireland TR, Ishikawa A, Itoh S, Kawasaki N, Kita NT, Kitajima K, Komatani S, Krot AN, Liu MC, Masuda Y, Morita M, Moynier F, Motomura K, Nakai I, Nagashima K, Nguyen A, Nittler L, Onose M, Pack A, Park C, Piani L, Qin L, Russell SS, Sakamoto N, Schönbächler M, Tafla L, Tang H, Terada K, Terada Y, Usui T, Wada S, Wadhwa M, Walker RJ, Yamashita K, Yin QZ, Yoneda S, Young ED, Yui H, Zhang AC, Nakamura T, Naraoka H, Noguchi T, Okazaki R, Sakamoto K, Yabuta H, Abe M, Miyazaki A, Nakato A, Nishimura M, Okada T, Yada T, Yogata K, Nakazawa S, Saiki T, Tanaka S, Terui F, Tsuda Y, Watanabe SI, Yoshikawa M, Tachibana S, Yurimoto H. Spitzer F, et al. Sci Adv. 2024 Sep 27;10(39):eadp2426. doi: 10.1126/sciadv.adp2426. Epub 2024 Sep 27. Sci Adv. 2024. PMID: 39331721 Free PMC article.
  • The origin of inner Solar System water.
    Alexander CMO. Alexander CMO. Philos Trans A Math Phys Eng Sci. 2017 May 28;375(2094):20150384. doi: 10.1098/rsta.2015.0384. Philos Trans A Math Phys Eng Sci. 2017. PMID: 28416723 Free PMC article. Review.
  • Low-Temperature Aqueous Alteration of Chondrites.
    Lee MR, Alexander CMO, Bischoff A, Brearley AJ, Dobrică E, Fujiya W, Le Guillou C, King AJ, van Kooten E, Krot AN, Leitner J, Marrocchi Y, Patzek M, Petaev MI, Piani L, Pravdivtseva O, Remusat L, Telus M, Tsuchiyama A, Vacher LG. Lee MR, et al. Space Sci Rev. 2025;221(1):11. doi: 10.1007/s11214-024-01132-8. Epub 2025 Feb 4. Space Sci Rev. 2025. PMID: 39916740 Free PMC article. Review.

Cited by

References

    1. Lodders K. Relative atomic solar system abundances, mass fractions, and atomic masses of the elements and their isotopes, composition of the solar photosphere, and compositions of the major chondritic meteorite groups. Space Sci Rev. 2021;217(3):1–33.
    1. Morota T, et al. Sample collection from asteroid (162173) Ryugu by Hayabusa2: Implications for surface evolution. Science. 2020;368(6491):654–659. - PubMed
    1. Tachibana S, et al. Pebbles and sand on asteroid (162173) Ryugu: in situ observation and particles returned to Earth. Science. 2022;375(6584):1011–1016. - PubMed
    1. Yada T, et al. Preliminary analysis of the Hayabusa2 samples returned from C-type asteroid Ryugu. Nat Astron. 2022;6(2):214–220.
    1. Yokoyama T, et al. The first returned samples from a C-type asteroid show kinship to the chemically most primitive meteorites. Science. 2022 doi: 10.1126/science.abn7850. - DOI