Efficient counter electrode for quantum dot sensitized solar cells using p-type PbS@reduced graphene oxide composite
- PMID: 39777232
- PMCID: PMC11702035
- DOI: 10.1039/d4na00971a
Efficient counter electrode for quantum dot sensitized solar cells using p-type PbS@reduced graphene oxide composite
Abstract
This study developed a novel PbS-rGO composite counter electrode to enhance the performance of quantum dot-sensitized solar cells (QDSSCs). The composite was synthesized via a hydrothermal method by anchoring PbS nanocubes onto reduced graphene oxide (rGO) sheets. The effect of the mass ratio of rGO to PbS (0.0, 0.1, 0.3, and 0.6) on power conversion efficiency (PCE) was investigated. The optimized rGO-PbS (0.03) composite achieved a power conversion efficiency of 5.358%, V oc of 0.540 V, J sc of 21.157 mA cm-2, and FF of 0.516. The rGO framework provides an interconnected conductive network that facilitates efficient charge transport, reduces charge transfer resistance, and improves overall conductivity. Electrochemical analyses confirmed the superior electrocatalytic activity of the composite in reducing the S n 2-/S2- redox couple. The unique band alignment between rGO and PbS optimized the electron transfer pathways. The hierarchical structure increased the surface area and light absorption, enabling a more effective charge transfer at the electrode-electrolyte interface.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
The authors declare that they have no competing financial interests or personal relationships that could influence the work reported in this study.
Figures










References
-
- Khan J. Arsalan M. H. Renewable Sustainable Energy Rev. 2016;55:414–425. doi: 10.1016/j.rser.2015.10.135. - DOI
Publication types
Associated data
LinkOut - more resources
Full Text Sources