Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar:295:139576.
doi: 10.1016/j.ijbiomac.2025.139576. Epub 2025 Jan 6.

METTL3-mediated m6A modification regulates muscle development by promoting TM4SF1 mRNA degradation in P-body via YTHDF2

Affiliations
Free article

METTL3-mediated m6A modification regulates muscle development by promoting TM4SF1 mRNA degradation in P-body via YTHDF2

Wenxiu Ru et al. Int J Biol Macromol. 2025 Mar.
Free article

Abstract

N6-methyladenosine (m6A), a well-known post-transcriptional modification, is implicated in diverse cellular and physiological processes. However, much remains unknown regarding the precise role and mechanism of m6A modification on muscle development. In this study, we make observation that the levels of m6A and METTL3 are markedly elevated during the differentiation phase (DM) compared to the growth phase (GM) in both C2C12 and bovine myoblasts. Notably, deletion of METTL3 decreased m6A levels, and promoted myoblast proliferation, inhibited myoblast differentiation in vitro. By performing m6A sequencing in both GM and DM myoblast, we further identified that TM4SF1 is involved in m6A -regulated muscle development. Mechanistically, METTL3 increases m6A-modified TM4SF1 transcripts, and subsequently YTHDF2 promotes TM4SF1 mRNA degradation in P-body through liquid-liquid phase separation (LLPS). Additionally, the rescue experiments in vivo showed that overexpressing METTL3 could rescue the attenuated myogenesis induced by TM4SF1 overexpression during muscle regeneration in mice. Collectively, our findings shed light on a regulatory mechanism by which m6A modulates muscle development and raise a new model for m6A-mediated mRNA degradation within P-bodies.

Keywords: METTL3; Muscle development; TM4SF1; YTHDF2; m(6)A modification.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors have no relevant financial or non-financial interests to disclose.

LinkOut - more resources