Lightweight multidimensional feature enhancement algorithm LPS-YOLO for UAV remote sensing target detection
- PMID: 39779765
- PMCID: PMC11711649
- DOI: 10.1038/s41598-025-85488-z
Lightweight multidimensional feature enhancement algorithm LPS-YOLO for UAV remote sensing target detection
Abstract
Detecting small targets in UAV remote sensing images is challenging for traditional lightweight methods due to difficulty in feature extraction and high background interference. We propose LPS-YOLO, which improves small target feature extraction while reducing computational complexity by replacing the Conv backbone with SPDConv to retain fine-grained features. LPS-YOLO introduces the SKAPP module for better feature fusion and incorporates the E-BiFPN and OFTP structures to efficiently preserve and transfer backbone information. Evaluation of the VisDrone2019 dataset shows a 17.3% increase in mean Average Precision (mAP) and a 42.5% reduction in parameters compared to the baseline. Additional experiments on the DOTAv2 dataset demonstrate the model's robustness, with a 14.5% improvement in F1 score and a 14.9% increase in mAP over YOLOv8-n. LPS-YOLO offers an effective solution for multi-target detection in UAVs.
© 2025. The Author(s).
Conflict of interest statement
Declarations. Competing interests: The authors declare no competing interests.
Figures









Similar articles
-
RFAG-YOLO: A Receptive Field Attention-Guided YOLO Network for Small-Object Detection in UAV Images.Sensors (Basel). 2025 Mar 30;25(7):2193. doi: 10.3390/s25072193. Sensors (Basel). 2025. PMID: 40218706 Free PMC article.
-
An object detection model AAPW-YOLO for UAV remote sensing images based on adaptive convolution and reconstructed feature fusion.Sci Rep. 2025 May 9;15(1):16214. doi: 10.1038/s41598-025-00239-4. Sci Rep. 2025. PMID: 40346071 Free PMC article.
-
LRDS-YOLO enhances small object detection in UAV aerial images with a lightweight and efficient design.Sci Rep. 2025 Jul 2;15(1):22627. doi: 10.1038/s41598-025-07021-6. Sci Rep. 2025. PMID: 40595033 Free PMC article.
-
A multi-scale small object detection algorithm SMA-YOLO for UAV remote sensing images.Sci Rep. 2025 Mar 18;15(1):9255. doi: 10.1038/s41598-025-92344-7. Sci Rep. 2025. PMID: 40102487 Free PMC article.
-
Fusion of multi-scale attention for aerial images small-target detection model based on PARE-YOLO.Sci Rep. 2025 Feb 8;15(1):4753. doi: 10.1038/s41598-025-88857-w. Sci Rep. 2025. PMID: 39922922 Free PMC article.
Cited by
-
Research on object detection and recognition in remote sensing images based on YOLOv11.Sci Rep. 2025 Apr 23;15(1):14032. doi: 10.1038/s41598-025-96314-x. Sci Rep. 2025. PMID: 40269047 Free PMC article.
-
Rose-Mamba-YOLO: an enhanced framework for efficient and accurate greenhouse rose monitoring.Front Plant Sci. 2025 Jun 27;16:1607582. doi: 10.3389/fpls.2025.1607582. eCollection 2025. Front Plant Sci. 2025. PMID: 40655551 Free PMC article.
-
Partial feature reparameterization and shallow-level interaction for remote sensing object detection.Sci Rep. 2025 Aug 5;15(1):28629. doi: 10.1038/s41598-025-14035-7. Sci Rep. 2025. PMID: 40764799 Free PMC article.
References
-
- Wu, X., Li, W., Hong, D., Tao, R. & Du, Q. Deep learning for unmanned aerial vehicle-based object detection and tracking: A survey. IEEE Geosci. Remote Sens. Mag.10, 91–124 (2021).
-
- Watts, A. C., Ambrosia, V. G. & Hinkley, E. A. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sens.4, 1671–1692 (2012).
-
- Colomina, I. & Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote. Sens.92, 79–97 (2014).
-
- Gupta, L., Jain, R. & Vaszkun, G. Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutor.18, 1123–1152 (2015).
-
- Bok, P.-B. & Tuchelmann, Y. Context-aware QoS control for wireless mesh networks of UAVs. In 2011 Proceedings of 20th International Conference on Computer Communications and Networks (ICCCN), 1–6 (IEEE, 2011).
Grants and funding
LinkOut - more resources
Full Text Sources