Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Apr;56(4):586-95.
doi: 10.1161/01.res.56.4.586.

Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle

Free article

Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle

K Sunagawa et al. Circ Res. 1985 Apr.
Free article

Abstract

In a previous analysis of ventricular arterial interaction (Sunagawa et al., 1983), we represented the left ventricle as an elastic chamber which periodically increases its volume elastance to a value equal to the slope of the linear end-systolic pressure-volume relationship. Similarly, the arterial load property was represented by an effective elastance which is the slope of the arterial end-systolic pressure-stroke volume relationship. Since the maximal transfer of potential energy from one elastic chamber to another occurs when they have equal elastance, we hypothesized that the left ventricle would do maximal external work if the ventricular elastance and the effective arterial elastance were equal. We tested this hypothesis in 10 isolated canine left ventricles, ejecting into a simulated arterial impedance, by extensively altering arterial resistance and finding the optimal resistance that maximized left ventricular stroke work under various combinations of end-diastolic volume, contractility, heart rate, and arterial compliance. Each of these parameters was set at one of three levels while others were at control. The optimal resistance varied only slightly with arterial compliance, whereas it varied widely with contractility and heart rate. We thus determined that the ratio of the optimal effective arterial elastance to the given ventricular elastance remained nearly unity. This result supports the hypothesis that the left ventricle does maximal external work to the arterial load when the ventricular and arterial elastances are equalized.

PubMed Disclaimer

Publication types

LinkOut - more resources