Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jan 9;11(1):1.
doi: 10.1038/s41572-024-00585-z.

Hereditary haemorrhagic telangiectasia

Affiliations
Review

Hereditary haemorrhagic telangiectasia

Ruben Hermann et al. Nat Rev Dis Primers. .

Abstract

Hereditary haemorrhagic telangiectasia (HHT) is a vascular dysplasia inherited as an autosomal dominant trait and caused by loss-of-function pathogenic variants in genes encoding proteins of the BMP signalling pathway. Up to 90% of disease-causal variants are observed in ENG and ACVRL1, with SMAD4 and GDF2 less frequently responsible for HHT. In adults, the most frequent HHT manifestations relate to iron deficiency and anaemia owing to recurrent epistaxis (nosebleeds) or bleeding from gastrointestinal telangiectases. Arteriovenous malformations (AVMs) in the lungs, liver and the central nervous system cause additional major complications and often complex symptoms, primarily due to vascular shunting, which is right-to-left through pulmonary AVMs (causing ischaemic stroke or cerebral abscess) and left-to-right through systemic AVMs (causing high cardiac output). Children usually experience isolated epistaxis; in rare cases, childhood complications occur from large AVMs in the lungs or central nervous system. Management goals encompass control of epistaxis and intestinal bleeding from telangiectases, screening for and treatment of iron deficiency (with or without anaemia) and AVMs, genetic counselling and evaluation of at-risk family members. Novel therapeutics, such as systemic antiangiogenic therapies, are actively being investigated. Although HHT is associated with increased morbidity, the appropriate screening and treatment of visceral AVMs, and the effective management of bleeding and anaemia, improves quality of life and overall survival.

PubMed Disclaimer

Conflict of interest statement

Competing interests: C.L.S. is listed as the inventor in the patent application filed by Imperial College London for the use of MEK1 inhibitors to treat telangiectasia in HHT (European Patent Application 23705641.1). O.F.E. is a consultant for Microvention, CERENOVUS and Balt, and is also a member of DSMB and on the advisory board for STREAM Study. All other authors declare no competing interests.

References

    1. McAllister, K. A. et al. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat. Genet. 8, 345–351 (1994). - PubMed - DOI
    1. Johnson, D. W. et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat. Genet. 13, 189–195 (1996). - PubMed - DOI
    1. Gallione, C. J. et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 363, 852–859 (2004). - PubMed - DOI
    1. Balachandar, S. et al. Identification and validation of a novel pathogenic variant in GDF2 (BMP9) responsible for hereditary hemorrhagic telangiectasia and pulmonary arteriovenous malformations. Am. J. Med. Genet. A 188, 959–964 (2022). - PubMed - DOI
    1. Wooderchak-Donahue, W. L. et al. BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am. J. Hum. Genet. 93, 530–537 (2013). - PubMed - PMC - DOI

MeSH terms

LinkOut - more resources