Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2024 Dec 31;14(6):1007-1010.
doi: 10.21037/cdt-24-423. Epub 2024 Dec 5.

Machine learning paving the way for successful antegrade crossing of total chronic coronary occlusions

Affiliations
Editorial

Machine learning paving the way for successful antegrade crossing of total chronic coronary occlusions

Philipp Breitbart et al. Cardiovasc Diagn Ther. .
No abstract available

Keywords: Coronary artery disease (CAD); antegrade crossing; artificial intelligence (AI); chronic total occlusion (CTO); machine learning (ML).

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://cdt.amegroups.com/article/view/10.21037/cdt-24-423/coif). P.B. reports consulting activities and honoraria for lectures: AstraZeneca, Bayer Vital, Thieme, Diaplan, BNK (Bundesverband Niedergelassener Kardiologen), Bristol-Myers Squibb, Daiichi Sankyo, Novo Nordisk, Pfizer and Sanofi Aventis; grants from German Heart Foundation; and travel fees from Bayer Vital and Daiichi Sankyo. D.W. reports institutional grants (trial support) from Abiomed, and honoraria for lectures from AstraZeneca, Bayer Vital, Edwards, Medtronic, Meril and Novartis. The other author has no conflicts of interest to declare.

Comment on

  • Predicting Successful Chronic Total Occlusion Crossing With Primary Antegrade Wiring Using Machine Learning.
    Rempakos A, Alexandrou M, Mutlu D, Kalyanasundaram A, Ybarra LF, Bagur R, Choi JW, Poommipanit P, Khatri JJ, Young L, Davies R, Benton S, Gorgulu S, Jaffer FA, Chandwaney R, Jaber W, Rinfret S, Nicholson W, Azzalini L, Kearney KE, Alaswad K, Basir MB, Krestyaninov O, Khelimskii D, Abi-Rafeh N, Elguindy A, Goktekin O, Aygul N, Rangan BV, Mastrodemos OC, Al-Ogaili A, Sandoval Y, Burke MN, Brilakis ES. Rempakos A, et al. JACC Cardiovasc Interv. 2024 Jul 22;17(14):1707-1716. doi: 10.1016/j.jcin.2024.04.043. Epub 2024 Jul 3. JACC Cardiovasc Interv. 2024. PMID: 38970585

References

    1. Rempakos A, Alexandrou M, Mutlu D, et al. Predicting Successful Chronic Total Occlusion Crossing With Primary Antegrade Wiring Using Machine Learning. JACC Cardiovasc Interv 2024;17:1707-16. 10.1016/j.jcin.2024.04.043 - DOI - PubMed
    1. Radke P. Künstliche Intelligenz in der kardiovaskulären Medizin-Status und Perspektiven. Aktuelle Kardiologie 2023;12:433-8. 10.1055/a-2146-0667 - DOI
    1. Martin SS, Aday AW, Almarzooq ZI, et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024;149:e347-913. 10.1161/CIR.0000000000001209 - DOI - PubMed
    1. Azzalini L, Jolicoeur EM, Pighi M, et al. Epidemiology, Management Strategies, and Outcomes of Patients With Chronic Total Coronary Occlusion. Am J Cardiol 2016;118:1128-35. 10.1016/j.amjcard.2016.07.023 - DOI - PubMed
    1. Fefer P, Knudtson ML, Cheema AN, et al. Current perspectives on coronary chronic total occlusions: the Canadian Multicenter Chronic Total Occlusions Registry. J Am Coll Cardiol 2012;59:991-7. 10.1016/j.jacc.2011.12.007 - DOI - PubMed

LinkOut - more resources