Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan-Mar;31(1):14604582241307839.
doi: 10.1177/14604582241307839.

Researching public health datasets in the era of deep learning: a systematic literature review

Affiliations
Free article

Researching public health datasets in the era of deep learning: a systematic literature review

Rand Obeidat et al. Health Informatics J. 2025 Jan-Mar.
Free article

Abstract

Objective: Explore deep learning applications in predictive analytics for public health data, identify challenges and trends, and then understand the current landscape. Materials and Methods: A systematic literature review was conducted in June 2023 to search articles on public health data in the context of deep learning, published from the inception of medical and computer science databases through June 2023. The review focused on diverse datasets, abstracting applications, challenges, and advancements in deep learning. Results: 2004 articles were reviewed, identifying 14 disease categories. Observed trends include explainable-AI, patient embedding learning, and integrating different data sources and employing deep learning models in health informatics. Noted challenges were technical reproducibility and handling sensitive data. Discussion: There has been a notable surge in deep learning applications on public health data publications since 2015. Consistent deep learning applications and models continue to be applied across public health data. Despite the wide applications, a standard approach still does not exist for addressing the outstanding challenges and issues in this field. Conclusion: Guidelines are needed for applying deep learning and models in public health data to improve FAIRness, efficiency, transparency, comparability, and interoperability of research. Interdisciplinary collaboration among data scientists, public health experts, and policymakers is needed to harness the full potential of deep learning.

Keywords: EHR analysis; deep learning applications; predictive modeling; public health datasets; trends and challenges.

PubMed Disclaimer

Conflict of interest statement

Declaration of conflicting interestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Publication types

LinkOut - more resources