Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jan 10:e2401757.
doi: 10.1002/smtd.202401757. Online ahead of print.

Self-Driving Microscopes: AI Meets Super-Resolution Microscopy

Affiliations
Review

Self-Driving Microscopes: AI Meets Super-Resolution Microscopy

Edward N Ward et al. Small Methods. .

Abstract

The integration of Machine Learning (ML) with super-resolution microscopy represents a transformative advancement in biomedical research. Recent advances in ML, particularly deep learning (DL), have significantly enhanced image processing tasks, such as denoising and reconstruction. This review explores the growing potential of automation in super-resolution microscopy, focusing on how DL can enable autonomous imaging tasks. Overcoming the challenges of automation, particularly in adapting to dynamic biological processes and minimizing manual intervention, is crucial for the future of microscopy. Whilst still in its infancy, automation in super-resolution can revolutionize drug discovery and disease phenotyping leading to similar breakthroughs as have been recognized in this year's Nobel Prizes for Physics and Chemistry.

Keywords: deep learning; machine learning; microscopy; super‐resolution.

PubMed Disclaimer

References

    1. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, et al., TensorFlow: Large‐Scale Machine Learning on Heterogeneous Distributed Systems.
    1. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Adv Neural Inf Process Syst. 2019, 32.
    1. E. Gómez‐de‐Mariscal, C. García‐López‐de‐Haro, W. Ouyang, L. Donati, E. Lundberg, M. Unser, A. Muñoz‐Barrutia, D. Sage, Nat. Methods. 2021, 18, 1192.
    1. L. von Chamier, R. F. Laine, J. Jukkala, C. Spahn, D. Krentzel, E. Nehme, M. Lerche, S. Hernández‐Pérez, P. K. Mattila, E. Karinou, S. Holden, A. C. Solak, A. Krull, T.‐O. Buchholz, M. L. Jones, L. A. Royer, C. Leterrier, Y. Shechtman, F. Jug, M. Heilemann, G. Jacquemet, R. Henriques, Nat. Commun. 2021, 12, 2276.
    1. J. Sonneck, Y. Zhou, J. Chen, Gigascience. 2024, 13, 120.

LinkOut - more resources