Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Mar;58(3):834-8.
doi: 10.1152/jappl.1985.58.3.834.

Respiratory epithelium inhibits bronchial smooth muscle tone

Respiratory epithelium inhibits bronchial smooth muscle tone

N A Flavahan et al. J Appl Physiol (1985). 1985 Mar.

Abstract

The aim of the present study was to determine whether or not the respiratory epithelium can modulate the responsiveness of bronchial smooth muscle. Paired rings of canine bronchi (4-6 mm OD), in some of which the epithelium had been removed mechanically (by rubbing the luminal surface), were mounted in physiological saline solution, gassed with 95% O2-5% CO2, and maintained at 37 degrees C. The presence or absence of the epithelium was confirmed by histological examination. Removal of the epithelium increased the contractile responses evoked by acetylcholine, histamine, and 5-hydroxytryptamine. Transmural nerve stimulation evoked similar peak responses in the presence and absence of epithelium. In unrubbed preparations, the peak response was followed by a gradual decrease when the stimulation was continued. This decrease, which persisted in the presence of propranolol, was not observed in epithelium-denuded preparations. In bronchial rings contracted with acetylcholine, isoproterenol produced concentration-dependent relaxations which were significantly greater in rings with epithelium compared with denuded rings. These results suggest that respiratory epithelial cells may generate an inhibitory signal to decrease the responsiveness of bronchial smooth muscle to contractile agonists and augment the effectiveness of inhibitory stimuli.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources