Improving 10-year cardiovascular risk prediction in patients with type 2 diabetes with metabolomics
- PMID: 39806417
- PMCID: PMC11730797
- DOI: 10.1186/s12933-025-02581-3
Improving 10-year cardiovascular risk prediction in patients with type 2 diabetes with metabolomics
Abstract
Background: Existing cardiovascular risk prediction models still have room for improvement in patients with type 2 diabetes who represent a high-risk population. This study evaluated whether adding metabolomic biomarkers could enhance the 10-year prediction of major adverse cardiovascular events (MACE) in these patients.
Methods: Data from 10,257 to 1,039 patients with type 2 diabetes from the UK Biobank (UKB) and the German ESTHER cohort, respectively, were used for model derivation, internal and external validation. A total of 249 metabolites were measured with nuclear magnetic resonance (NMR) spectroscopy. Sex-specific LASSO regression with bootstrapping identified significant metabolites. The enhanced model's predictive performance was evaluated using Harrell's C-index.
Results: Seven metabolomic biomarkers were selected by LASSO regression for enhanced MACE risk prediction (three for both sexes, three male- and one female-specific metabolite(s)). Especially albumin and the omega-3-fatty-acids-to-total-fatty-acids-percentage among males and lactate among females improved the C-index. In internal validation with 30% of the UKB, adding the selected metabolites to the SCORE2-Diabetes model increased the C-index statistically significantly (P = 0.037) from 0.660 to 0.678 in the total sample. In external validation with ESTHER, the C-index increase was higher (+ 0.043) and remained statistically significant (P = 0.011).
Conclusions: Incorporating seven metabolomic biomarkers in the SCORE2-Diabetes model enhanced its ability to predict MACE in patients with type 2 diabetes. Given the latest cost reduction and standardization efforts, NMR metabolomics has the potential for translation into the clinical routine.
Keywords: Cardiovascular risk; Metabolomics; Prediction model; Type 2 diabetes.
© 2025. The Author(s).
Conflict of interest statement
Declarations. Competing interest: The authors declare no competing interests.
Figures
References
-
- Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22. - DOI - PMC - PubMed
-
- Visseren FL, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, Benetos A, Biffi A, Boavida J-M, Capodanno D. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice: developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies with the special contribution of the European Association of Preventive Cardiology (EAPC). Eur J Prev Cardiol. 2022;29(1):5–115. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
