The aerial epidermis is a major site of quinolizidine alkaloid biosynthesis in narrow-leafed lupin
- PMID: 39807565
- PMCID: PMC11798894
- DOI: 10.1111/nph.20384
The aerial epidermis is a major site of quinolizidine alkaloid biosynthesis in narrow-leafed lupin
Abstract
Lupins are promising protein crops that accumulate toxic quinolizidine alkaloids (QAs) in the seeds, complicating their end-use. QAs are synthesized in green organs (leaves, stems, and pods) and a subset of them is transported to the seeds during fruit development. The exact sites of biosynthesis and accumulation remain unknown; however, mesophyll cells have been proposed as sources, and epidermal cells as sinks. We investigated the exact sites of QA biosynthesis and accumulation in biosynthetic organs of narrow-leafed lupin (Lupinus angustifolius) using mass spectrometry-based imaging (MSI), laser-capture microdissection coupled to RNA-Seq, and precursor feeding studies coupled to LC-MS and MSI. We found that the QAs that accumulate in seeds ('core' QAs) were evenly distributed across tissues; however, their esterified versions accumulated primarily in the epidermis. Surprisingly, RNA-Seq revealed strong biosynthetic gene expression in the epidermis, which was confirmed in leaves by quantitative real-time polymerase chain reaction. Finally, feeding studies using a stably labeled precursor showed that the lower leaf epidermis is highly biosynthetic. Our results indicate that the epidermis is a major site of QA biosynthesis in narrow-leafed lupin, challenging the current assumptions. Our work has direct implications for the elucidation of the QA biosynthesis pathway and the long-distance transport network from source to seed.
Keywords: LCM; Lupinus angustifolius; MALDI‐MSI; laser‐capture microdissection; lupin alkaloids; plant specialized metabolites.
© 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation.
Conflict of interest statement
None declared.
Figures








References
-
- Aïnouche A, Bayer RJ, Misset M‐T. 2004. Molecular phylogeny, diversification and character evolution in Lupinus (Fabaceae) with special attention to Mediterranean and African lupines. Plant Systematics and Evolution 246: 211–222.
-
- Bentley M, Leonard D, Reynolds E, Leach S, Beck A, Murakoshi I. 1984. Lupine alkaloids as larval feeding deterrents for spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Annals of the Entomological Society of America 77: 398–400.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources