Triplicate Dynamic Cell Culture Platform for Enhanced Reproducibility in Anti-Cancer Drug Testing
- PMID: 39809465
- PMCID: PMC11815626
- DOI: 10.1021/acsbiomaterials.4c02142
Triplicate Dynamic Cell Culture Platform for Enhanced Reproducibility in Anti-Cancer Drug Testing
Abstract
The development of stable and standardized in vitro cytotoxicity testing models is essential for drug discovery and personalized medicine. Microfluidic technologies, recognized for their small size, reduced reagent consumption, and control over experimental variables, have gained considerable attention. However, challenges associated with external pumps, particularly inconsistencies between individual pumping systems, have limited the real-world application of cancer-on-a-chip technology. This study introduces a novel triplicate cell culture system (Tri-CS) that simultaneously supports dynamic cultures in three independent units using a single peristaltic pump, ensuring consistent flow conditions. Our findings demonstrate that the Tri-CS significantly reduces variability compared to individual pump systems, enhancing the reliability of anticancer drug cytotoxicity testing. Furthermore, we evaluated gemcitabine cytotoxicity, which shows enhanced drug efficacy in dynamic conditions. Fluorescein diffusion tests revealed greater diffusion efficiency in dynamic cultures, which contributed to the higher observed drug efficacy. The potential for broader application of the Tri-CS, including its compatibility with commercially available transwells and the opportunity for use in more complex cancer-on-chip models, positions this system as a valuable tool for advancing microphysiological systems in preclinical research.
Keywords: drug cytotoxicity testing; dynamic cell culture; microfluidics; organ-on-a-chip; reproducibility.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





References
-
- Mu H. Y.; Lin C. M.; Chu L. A.; Lin Y. H.; Li J.; Liu C. Y.; Huang H. C.; Cheng S. L.; Lee T. Y.; Lee H. M.; et al. Ex Vivo Evaluation of Combination Immunotherapy Using Tumor-Microenvironment-on-Chip. Adv. Healthcare Mater. 2024, 13 (2), 230226810.1002/adhm.202302268. - DOI - PubMed
- Xiao S.; Coppeta J. R.; Rogers H. B.; Isenberg B. C.; Zhu J.; Olalekan S. A.; McKinnon K. E.; Dokic D.; Rashedi A. S.; Haisenleder D. J.; et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 2017, 8 (1), 1458410.1038/ncomms14584. - DOI - PMC - PubMed
- Nguyen D.-H. T.; Lee E.; Alimperti S.; Norgard R. J.; Wong A.; Lee J. J.-K.; Eyckmans J.; Stanger B. Z.; Chen C. S. A biomimetic pancreatic cancer on-chip reveals endothelial ablation via ALK7 signaling. Sci. Adv. 2019, 5 (8), eaav678910.1126/sciadv.aav6789. - DOI - PMC - PubMed
-
- Ingber D. E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 2022, 23 (8), 467–491. 10.1038/s41576-022-00466-9. - DOI - PMC - PubMed
- Zhai J.; Liu Y.; Ji W.; Huang X.; Wang P.; Li Y.; Li H.; Wong A. H.-H.; Zhou X.; Chen P.; et al. Drug screening on digital microfluidics for cancer precision medicine. Nat. Commun. 2024, 15 (1), 436310.1038/s41467-024-48616-3. - DOI - PMC - PubMed
-
- Schwab F. D.; Scheidmann M. C.; Ozimski L. L.; Kling A.; Armbrecht L.; Ryser T.; Krol I.; Strittmatter K.; Nguyen-Sträuli B. D.; Jacob F.; et al. MyCTC chip: microfluidic-based drug screen with patient-derived tumour cells from liquid biopsies. Microsyst. Nanoeng. 2022, 8 (1), 13010.1038/s41378-022-00467-y. - DOI - PMC - PubMed
- Byun C. K.; Abi-Samra K.; Cho Y. K.; Takayama S. Pumps for microfluidic cell culture. Electrophoresis 2014, 35 (2–3), 245–257. 10.1002/elps.201300205. - DOI - PubMed
- Ni B.-S.; Tzao C.; Huang J.-H. Plug-and-play in vitro metastasis system toward recapitulating the metastatic cascade. Sci. Rep. 2019, 9 (1), 1811010.1038/s41598-019-54711-z. - DOI - PMC - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources