Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Feb 3;22(2):787-807.
doi: 10.1021/acs.molpharmaceut.4c00917. Epub 2025 Jan 14.

MRI-Based Multifunctional Nanoliposomes for Enhanced HCC Therapy and Diagnosis

Affiliations

MRI-Based Multifunctional Nanoliposomes for Enhanced HCC Therapy and Diagnosis

Jingxin Sun et al. Mol Pharm. .

Abstract

The morbidity and mortality rates of hepatocellular carcinoma (HCC) are high and continue to increase. The antitumor effects of single therapies are limited because of tumor heterogeneity and drug resistance, and the lack of real-time monitoring of tumor progression during the treatment process leads to poor therapeutic outcomes. Therefore, novel nanodelivery platforms combining tumor therapy and diagnosis have garnered extensive attention. In this study, we developed a multifunctional nanodelivery vector, LPSD-DOX/siRNA, which was loaded with oleic acid-modified superparamagnetic iron oxide nanoparticles (OA-SPION) and the antitumor drug doxorubicin (DOX), further modified by DOTAP to carry small interfering RNA targeting phosphatidylinositol proteoglycan-3 (Glypican-3, GPC3) (siRNA-GPC3). These components were utilized for the combined treatment of HCC and tumor monitoring with magnetic resonance imaging. LPSD-DOX/siRNA exhibited high drug loading, high gene transfection efficiency, and low toxicity. Pharmacokinetic and in vivo distribution experiments showed that LPSD-DOX/siRNA significantly prolonged the circulation time of DOX and enhanced drug accumulation at the tumor site. Magnetic resonance imaging demonstrated that LPSD-DOX/siRNA can serve as a T2 imaging contrast agent to enhance the imaging contrast between the tumor site and other tissues and facilitate the imaging monitoring of tumor tissues. Antitumor experiments revealed that the effects of DOX were promoted by inhibiting the expression of GPC3 protein in HepG2 cell-transplanted tumors, with increased tumor apoptosis. In conclusion, LPSD-DOX/siRNA serves as a promising strategy for combination therapy and monitoring of HCC, with significant potential in antitumor therapy.

Keywords: glypican-3; hepatocellular carcinoma; magnetic resonance imaging; small interfering RNA; superparamagnetic iron oxide nanoparticles; synergistic therapy.

PubMed Disclaimer

MeSH terms

LinkOut - more resources