A Serial MRI-based Deep Learning Model to Predict Survival in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma
- PMID: 39812582
- DOI: 10.1148/ryai.230544
A Serial MRI-based Deep Learning Model to Predict Survival in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma
Abstract
Purpose To develop and evaluate a deep learning-based prognostic model for predicting survival in locoregionally advanced nasopharyngeal carcinoma (LA-NPC) using serial MRI before and after induction chemotherapy (IC). Materials and Methods This multicenter retrospective study included 1039 patients with LA-NPC (779 male and 260 female patients; mean age, 44 years ± 11 [SD]) diagnosed between December 2011 and January 2016. A radiomics-clinical prognostic model (model RC) was developed using pre- and post-IC MRI acquisitions and other clinical factors using graph convolutional neural networks. The concordance index (C-index) was used to evaluate model performance in predicting disease-free survival (DFS). The survival benefits of concurrent chemoradiation therapy (CCRT) were analyzed in model-defined risk groups. Results The C-indexes of model RC for predicting DFS were significantly higher than those of TNM staging in the internal (0.79 vs 0.53) and external (0.79 vs 0.62, both P < .001) testing cohorts. The 5-year DFS for the model RC-defined low-risk group was significantly better than that of the high-risk group (90.6% vs 58.9%, P < .001). In high-risk patients, those who underwent CCRT had a higher 5-year DFS rate than those who did not (58.7% vs 28.6%, P = .03). There was no evidence of a difference in 5-year DFS rate in low-risk patients who did or did not undergo CCRT (91.9% vs 81.3%, P = .19). Conclusion Serial MRI before and after IC can effectively help predict survival in LA-NPC. The radiomics-clinical prognostic model developed using a graph convolutional network-based deep learning method showed good risk discrimination capabilities and may facilitate risk-adapted therapy. Keywords: Nasopharyngeal Carcinoma, Deep Learning, Induction Chemotherapy, Serial MRI, MR Imaging, Radiomics, Prognosis, Radiation Therapy/Oncology, Head/Neck Supplemental material is available for this article. © RSNA, 2025.
Keywords: Deep Learning; Head/Neck; Induction Chemotherapy; MR Imaging; Nasopharyngeal Carcinoma; Prognosis; Radiation Therapy/Oncology; Radiomics; Serial MRI.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical