Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan 29;147(4):3885-3895.
doi: 10.1021/jacs.4c18026. Epub 2025 Jan 15.

TiOx(OH)4-2 x Nanosheets with Catalytic Antioxidative Activity Alleviate Oxidative Injury in Diabetic Cardiomyopathy

Affiliations

TiOx(OH)4-2 x Nanosheets with Catalytic Antioxidative Activity Alleviate Oxidative Injury in Diabetic Cardiomyopathy

Yufan Yao et al. J Am Chem Soc. .

Abstract

Diabetic cardiomyopathy (DCM) is one of the most lethal complications of diabetes and is induced by the overproduction of reactive oxygen species (ROS) in cardiomyocytes due to sustained high glucose levels, leading to cardiac oxidative damage and final sudden death. Drugs and antioxidants currently applied to the clinical therapy of DCM fail to scavenge ROS efficiently, resulting in compromised therapeutic efficacy. Herein, a nanocatalytic antioxidative therapeutic strategy is proposed for DCM treatment. A two-dimensional TiOx(OH)4-2x nanosheet platform has been constructed with efficient ROS-scavenging activity, which can catalyze antioxidation reaction through redox cycling between TiIV/TiIII accompanied by inner-sphere two-electron transfer. Cellular experiments demonstrate that the TiOx(OH)4-2x nanosheet can not only protect cardiomyocytes from oxidative damage induced by a high glucose environment but also alleviate inflammation to further protect cardiomyocytes from inflammatory injury. The in vivo animal model confirms that the nanosheet alleviates myocardial oxidative injury and recovers cardiac function. Such a nanocatalytic antioxidation strategy is expected to provide a feasible approach for treating DCM and other cardiovascular diseases.

PubMed Disclaimer

MeSH terms

LinkOut - more resources