Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar:297:139823.
doi: 10.1016/j.ijbiomac.2025.139823. Epub 2025 Jan 13.

N-acetyltransferase 10 impedes EZH2/H3K27me3/GABARAP axis mediated autophagy and facilitates lung cancer tumorigenesis through enhancing SGK2 mRNA acetylation

Affiliations

N-acetyltransferase 10 impedes EZH2/H3K27me3/GABARAP axis mediated autophagy and facilitates lung cancer tumorigenesis through enhancing SGK2 mRNA acetylation

Nan Xiao et al. Int J Biol Macromol. 2025 Mar.

Abstract

N4-acetylcytidine (ac4C) is a critical RNA modification implicated in cancer progression. Currently, N-acetyltransferase 10 (NAT10) is recognized as the sole "writer" protein responsible for ac4C modification. However, the study of NAT10 and ac4C modification in lung cancer remains sparse. In this study, we observed a significant upregulation of NAT10 expression in lung cancer, which is strongly correlated with poor prognostic outcomes. In vitro and in vivo experiments have demonstrated that NAT10 facilitates the proliferation, migration, and invasion of non-small cell lung cancer (NSCLC) cells while inhibiting autophagy flux. Mechanistically, NAT10 may enhance mRNA stability through ac4c modification at the 3' untranslated region (UTR) of SGK2 mRNA. Furthermore, SGK2 interacts with EZH2 and phosphorylates it at threonine 367, leading to increased protein stability of EZH2 and a reduction in its ubiquitination. Additionally, NAT10 impedes autophagy flux by preventing the fusion of autophagosomes with lysosomes and suppressing GABARAP transcription, which is regulated by EZH2-mediated H3K27me3. In summary, our study elucidates the biological significance and molecular mechanisms of the NAT10/SGK2/EZH2 axis in the pathogenesis of lung cancer, potentially providing novel prognostic markers and therapeutic targets for its treatment.

Keywords: Autophagy; EZH2; Lung cancer; NAT10; SGK2 mRNA acetylation.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no conflict of interest.

MeSH terms

Substances

LinkOut - more resources