Actions of dexmedetomidine in regulating NLRP3 in postoperative cognitive dysfunction in aged mice via the autophagy-lysosome pathway
- PMID: 39815423
- DOI: 10.1111/bph.17378
Actions of dexmedetomidine in regulating NLRP3 in postoperative cognitive dysfunction in aged mice via the autophagy-lysosome pathway
Abstract
Background and purpose: Autophagy-lysosomal pathway dysfunction leads to postoperative cognitive dysfunction (POCD). Dexmedetomidine (Dex) improves POCD, and we probed the effects of Dex on autophagy-lysosomal pathway dysfunction in a POCD model.
Experimental approach: A POCD mouse model was established and intraperitoneally injected with Dex. Cognitive function was evaluated by Morris water maze/open field test/novel object recognition assay. Levels of neurotransmitters/inflammatory cytokines in hippocampus, and NLRP3/ASC/Cleaved Caspase-1 proteins were determined by ELISA/Western blot. NLRP3 inflammasome-mediated microglial activation/astrocyte A1 differentiation in the hippocampal CA1 region were assessed by immunofluorescence assay. BV-2 cells were treated with lipopolysaccharide (LPS) and Dex and/or the NLRP3 inflammasome activator Nigericin, and transfected with si-TFEB for co-culture with primary reactive astrocytes (RAs) to verify the function of Dex in vitro.
Key results: Dex alleviated cognitive dysfunction in POCD mice and repressed NLRP3 inflammasome-mediated microglial activation and astrocyte A1 differentiation. NLRP3 inflammasome activation partially reversed the protective effect of Dex on the POCD condition. In vitro experiments verified the inhibitory properties of Dex on microglial activation and astrocyte A1 differentiation. Dex induces TFEB nuclear translocation, microglial autophagy and lysosomal biogenesis. By activating the autophagy-lysosome pathway, Dex regulated NLRP3 inflammasome-mediated microglial activation, inhibited astrocyte A1 differentiation and alleviated POCD in vivo.
Conclusion and implications: Dex regulates NLRP3 inflammasome-mediated hippocampal microglial activation by promoting TFEB nuclear translocation and activating the autophagy-lysosome pathway and inhibits astrocyte A1 differentiation, thereby alleviating POCD.
Keywords: NLRP3 inflammasome; TFEB; astrocyte A1 differentiation; autophagy–lysosome pathway; dexmedetomidine; microglial activation; postoperative cognitive dysfunction.
© 2025 British Pharmacological Society.
Similar articles
-
Neuroprotective Effect of Dexmedetomidine against Postoperative Cognitive Decline via NLRP3 Inflammasome Signaling Pathway.Int J Mol Sci. 2022 Aug 8;23(15):8806. doi: 10.3390/ijms23158806. Int J Mol Sci. 2022. PMID: 35955939 Free PMC article.
-
Hippocampal HDAC6 promotes POCD by regulating NLRP3-induced microglia pyroptosis via HSP90/HSP70 in aged mice.Biochim Biophys Acta Mol Basis Dis. 2024 Jun;1870(5):167137. doi: 10.1016/j.bbadis.2024.167137. Epub 2024 Mar 23. Biochim Biophys Acta Mol Basis Dis. 2024. PMID: 38527593
-
Dexmedetomidine Ameliorates Postoperative Cognitive Dysfunction in Aged Mice.Neurochem Res. 2021 Sep;46(9):2415-2426. doi: 10.1007/s11064-021-03386-y. Epub 2021 Jun 23. Neurochem Res. 2021. PMID: 34159456
-
Effects of Midazolam and Dexmedetomidine on Cognitive Dysfunction Following Open-Heart Surgery: A Comprehensive Review.Brain Behav. 2025 Apr;15(4):e70421. doi: 10.1002/brb3.70421. Brain Behav. 2025. PMID: 40200828 Free PMC article. Review.
-
Mechanisms and therapeutic strategies for NLRP3 degradation via post-translational modifications in ubiquitin-proteasome and autophagy lysosomal pathway.Eur J Med Chem. 2025 May 5;289:117476. doi: 10.1016/j.ejmech.2025.117476. Epub 2025 Mar 4. Eur J Med Chem. 2025. PMID: 40056798 Review.
References
REFERENCES
-
- Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Abbracchio, M. P., Abraham, G., Agoulnik, A., Alexander, W., Al‐Hosaini, K., Bäck, M., Baker, J. G., Barnes, N. M., … Ye, R. D. (2023). The Concise Guide to PHARMACOLOGY 2023/24: G protein‐coupled receptors. British Journal of Pharmacology, 180, S23–S144. https://doi.org/10.1111/bph.16177
-
- Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Annett, S., Boison, D., Burns, K. E., Dessauer, C., Gertsch, J., Helsby, N. A., Izzo, A. A., Ostrom, R., Papapetropoulos, A., … Wong, S. S. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Enzymes. British Journal of Pharmacology, 180, S289–S373. https://doi.org/10.1111/bph.16181
-
- Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Beuve, A., Brouckaert, P., Bryant, C., Burnett, J. C., Farndale, R. W., Friebe, A., Garthwaite, J., Hobbs, A. J., Jarvis, G. E., … Waldman, S. A. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Catalytic receptors. British Journal of Pharmacology, 180, S241–S288. https://doi.org/10.1111/bph.16180
-
- Alexander, S. P. H., Mathie, A. A., Peters, J. A., Veale, E. L., Striessnig, J., Kelly, E., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Aldrich, R. W., Attali, B., Baggetta, A. M., Becirovic, E., Biel, M., Bill, R. M., Caceres, A. I., Catterall, W. A., Conner, A. C., … Zhu, M. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. British Journal of Pharmacology, 180, S145–S222. https://doi.org/10.1111/bph.16178
-
- Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., & Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. British Journal of Pharmacology, 175(3), 407–411. https://doi.org/10.1111/bph.14112
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous